Supporting Bulk Synchronous Parallelism in Map-Reduce Queries

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/mrql/

DataCloud 2012
Data Processing Using Map-Reduce (MR)

- MR facilitates the parallel execution of ad-hoc, long-running, large-scale data analysis tasks on a shared-nothing cluster of commodity computers connected through a high-speed network. It hides the details of parallelization, data distribution, fault-tolerance, and load balancing.

- Several implementations:
 - Apache Hadoop, Google Sawzall, Microsoft Dryad, ...

- Used extensively by companies on a very large scale:
 - Yahoo! manages more than 42,000 Hadoop nodes holding 200 PBs
 - Yahoo!’s biggest cluster: 4,000 nodes
 - More than 22 organizations are running PB-scale Hadoop clusters

- Some higher-level languages that make MR programming easier:
 - Hive, Pig, Scope, Dryad/Linq, ...

- Preferred by MR programmers:
 - Pig is used for over 60% of Yahoo! MR jobs
 - Hive is used for 90% of Facebook MR jobs

Supporting Bulk Synchronous Parallelism in Map-Reduce Queries http://lambda.uta.edu/mrql/
The MR Programming Framework

Very simple model: need to specify a map and a reduce task

- the map task specifies how to process a single key/value pair to generate a set of intermediate key/value pairs
- the reduce task specifies how to merge all intermediate values associated with the same intermediate key

Drawback:

- The I/O of a MR job is done through DFS (Distributed File System)

It simplifies fault-tolerance but imposes a high overhead for

- complex MR workflows
- repetitive MR jobs

needed for graph analysis, such as PageRank

Supporting Bulk Synchronous Parallelism in Map-Reduce Queries http://lambda.uta.edu/mrql/
The Bulk Synchronous Parallelism (BSP) Model

- Introduced by Leslie Valliant in 1989
- A BSP program is a parallel computation that consists of a sequence of supersteps
 - each superstep is evaluated in parallel by every peer
 - and consists of three stages:
 1. a local computation
 2. a process communication
 3. barrier synchronization
- Implementations for cloud computing:
 Google’s Pregel, Apache’s Giraph and Hama
- Drawback:
 the local state of each peer must not exceed its memory capacity
 ⇒ the entire graph, as well as the auxiliary data needed for processing the graph, must fit in the total memory of the cluster
Goals

- Want to run large-scale data analysis programs in both modes: MR and BSP
 - without modifying the programs
 - if enough resources are available and performance is preferred over resilience ⇒ BSP
 - ... otherwise ⇒ MR
- This can be done if data analysis programs were expressed in a higher-level declarative form
 - hides implementation details
 - offers opportunities for optimization
 - easier to learn, maintain, adapt
 - preferred by many programmers anyway
- Our goal is to translate and optimize MRQL queries to BSP jobs
 translating MRQL to MR workflows is done in our earlier work
- Our approach is to translate the already optimized MR plans generated by MRQL to BSP
Related Work

- Many higher-level MR languages:

 Hive, Pig, PACT/Nephele, SCOPE, Dryad/Linq, ...

- Systems that improve the evaluation of MR workflows and repetitive jobs:

 Halloop, Twister, SystemML, ...

- Systems that use distributed memory for parallel computing:

 Main Memory MR (M3R), Piccolo, GraphLab, ...

- **Spark**: provides primitives for in-memory cluster computing

 - based on Resilient Distributed Datasets (RDDs):
 fault-tolerant, parallel data structures to explicitly share intermediate results in memory

 - **Shark**: runs Hive queries on Spark

- **Asterix**: a scalable platform to store, manage, and analyze large volumes of semistructured data

 uses its own distributed data store, Hyracks translates iterative jobs to Datalog, then to Hyracks operations
MRQL: the Map-Reduce Query Language

- Has SQL-like syntax, but is far more powerful than SQL
- Has been influenced by functional query languages, such as OQL and XQuery
- Its semantics is based on list comprehensions with group-by/order-by
- Implemented in Java on top of Hadoop
- Allows arbitrary query nesting, UDFs, custom aggregations, and custom parsers
- Can operate on complex data, such as nested collections and trees
- Can process:
 - record-oriented text documents
 - XML and JSON documents
 - binary encoded documents
- Uses a novel cost-based optimization framework to map algebraic forms to efficient workflows of physical plan operators
- Handles deeply nested queries, of any form and at any nesting level
- Handles dependent joins (used for nested collections)

Supporting Bulk Synchronous Parallelism in Map-Reduce Queries http://lambda.uta.edu/mrql/
Matrix Multiplication in MRQL

\[Z_{ij} = \sum_k X_{ik} \ast Y_{kj} \]

A sparse matrix \(X \) is represented as a bag of \((X_{ij}, i, j) \)

```sql
select ( sum(z), i, j )
from (x,i,k) in X, (y,k,j) in Y, z = x*y
group by i, j
```

MRQL evaluates it using two MR jobs

Complex algorithms, such as matrix factorization, require many repetitive matrix multiplications

MRQL may fuse consecutive computations, eliminating intermediate matrices
K-Means Clustering in MRQL

It clusters the data points by their closest centroid, and, for each cluster, a new centroid is calculated from the average values of its points.

```
repeat centroids = ...

step select < X: avg(s.X), Y: avg(s.Y) >
    from s in Points
    group by ( select c from c in centroids order by distance(c,s) )[0]
```

MRQL needs one MR job for each repeat step.
PageRank in MRQL

Each node in nodes has an id, a PageRank, and outgoing links:

\[
\langle \text{id: int, rank: float, links: \{ int \} } \rangle
\]

```q
repeat nodes = ...
    step select ( \langle \text{id: m.id, rank: n.rank, links: m.links } \rangle,
        abs((n.rank-m.rank)/m.rank) > 0.1 )
    from n in (select \langle \text{id: key, rank: sum(c.rank) } \rangle
        from c in (select \langle \text{id: a, rank: n.rank/count(n.links) } \rangle
            from n in nodes, a in n.links )
        group by key: c.id),
    m in nodes
where n.id = m.id
```

MRQL needs one MR job for each repeat step
The MR Operation

A MR job:

\[\text{mapReduce}(m, r) S \]

transforms a data set \(S \) of type \(\{\alpha\} \) into a data set of type \(\{\beta\} \).

Types:

\[m: \quad \alpha \rightarrow \{ (\kappa, \gamma) \} \quad \text{the map function} \]
\[r: \quad (\kappa, \{\gamma\}) \rightarrow \{\beta\} \quad \text{the reduce function} \]

Semantics:

\[\text{mapReduce}(m, r) S = \text{cmap}(r) (\text{groupBy}(\text{cmap}(m) S)) \]

where:

\[\text{cmap}(f): \quad \{\alpha\} \rightarrow \{\beta\}, \quad \text{given that } f: \alpha \rightarrow \{\beta\} \]
\[\text{groupBy}: \quad \{(\kappa, \alpha)\} \rightarrow \{(\kappa, \{\alpha\})\} \]
The BSP Operation

A BSP job:

\[
\text{bsp(superstep, initstate) } S
\]

maps a dataset \(S \) of type \(V \) into a new dataset of type \(V \), by repeating a superstep of type:

\[
\text{superstep: } (\{M\}, V, K) \rightarrow (\{(I, M)\}, V, K, \text{boolean})
\]

The superstep is evaluated by every peer participating in the BSP computation and

- it maps the peer’s local snapshot \(V \) to a new local snapshot \(V \)
- it receives messages \(\{M\} \) and sends messages \(\{(I, M)\} \) to peers \(I \)
- the superstep logic is controlled by a DFA:
 - the DFA state is of type \(K \)
 - a superstep makes a transition from a state \(K \) to a new state \(K \)
 - the initial state is initstate
BSP Synchronization

The superstep type again:

\[
\text{superstep: } (\{M\}, V, K) \rightarrow (\{(I, M)\}, V, K, \text{boolean})
\]

Synchronization:
- The returned flag indicates whether the peer wants to terminate this BSP computation or use barrier synchronization and continue by repeating the superstep
 - only if all peers agree to exit (when they all return true), then every peer should exit the BSP computation
 - if there is at least one peer who wants to continue, then every peer must do barrier synchronization and repeat the superstep
MR-to-BSP Transformation

A MR job can be evaluated using a BSP job that has two supersteps: one for the map and one for the reduce task:

\[
\text{mapReduce}(m, r) \ S = \text{bsp}(\lambda(ms, as, is_map). \ \text{if} \ is_map \\
\text{then} (\text{cmap}(\lambda(k, c). \ \{ (\text{shuffle}(k), (k, c)) \}) \\
(\text{cmap}(\lambda(k, c). m(c)) as), \\
\{ \}, \text{false}, \text{false}) \\
\text{else} (\{ \}, \text{cmap}(r) (\text{groupBy}(ms)), \text{false}, \text{true}), \text{true}) \ S
\]

The DFA state is a boolean flag \textit{is_map} that indicates whether we are in map or reduce mode

The map step shuffles the map results to the reducers, using the function \textit{shuffle} that maps a key \(k \) to a peer
repeat $S = S_0$
step loopstep(S)

Suppose that the loopstep is translated to a BSP operation:

$$\text{loopstep}(S) = \text{bsp}(s, k_0) \ S$$

where s is the superstep. Then, the repeat loop can be translated to:

$$\text{bsp}(\lambda(ms, vs, k). \ \text{let} \ (ts, bs, k, \text{exit}) \leftarrow s(ms, vs, k) \ \text{in} \ \text{if} \ \text{exit} \ \text{then} \ (\{\}, \ \text{cmap}(\lambda(t, (v, b)). \ {(t, v)})) \ bs, \ k_0, \ \forall (t, (v, b)) \in bs : \neg b) \ \text{else} \ (ts, bs, k, \text{false}), \ k_0) \ S$$
Normalization

Translating an MRQL query to a BSP job:

1. the query is translated and optimized to a workflow of MR jobs that consists of MR algebraic forms
2. each MR algebraic form is mapped to a BSP job
3. the BSP workflow is normalized to a single BSP job

\[
\text{bsp}(s_2, k_2) \ (\text{bsp}(s_1, k_1) \ S) = \text{bsp}(\lambda(ms, as, (first, k)). \\
\text{if } first \\
\text{then let } (ts, bs, k', b) \leftarrow s_1(ms, as, k), \\
\text{exit } \leftarrow \text{synchronize}(b) \quad // \text{ poll peers if they} \\
\text{in } (ts, bs, \\
\text{(} \neg\text{exit, if exit then } k_2 \text{ else } k' \text{) ,} \\
\text{false}) \\
\text{else let } (ts, bs, k', b) \leftarrow s_2(ms, as, k) \\
\text{in } (ts, bs, (false, k'), b), \\
(true, k_1) \) \ S
\]
Current Status

- MRQL is implemented on top of Apache Hadoop and Hama
- It is available at http://lambda.uta.edu/mrql/
- Open source at https://github.com/fegaras/mrql
- It can execute MRQL queries in two modes:
 - using the MR framework on Apache Hadoop, or
 - using the BSP framework on Apache Hama
Performance Evaluation

Setup: 8 nodes/32 cores

K-Means clustering (left) and PageRank (right) using MR and BSP:

![Graph 1: Total Time vs Number of Points](Image)

![Graph 2: Total Time vs Number of Edges](Image)
Future Work

- Develop a cost model to decide between MR and BSP, based on available resources
- Apply MRQL to large-scale scientific data analysis
 - array-based query optimization
- Map MRQL to Spark or Hyracks