Uniform Traversal Combinators:
Definition, Use and Properties *

Leonidas Fegaras®, Tim Sheard?, and David Stemple!

! Department of Computer and Information Science, University of Massachusetts, Amherst,
MA 01003. (email: {fegaras,stemple}@cs.umass.edu)

2 Department of Computer Science and Engineering, Oregon Graduate Institute, Beaverton,
OR 97006. (email: sheard@cse.ogi.edu)

Abstract

In this paper we explore ways of capturing well-formed patterns of recursion in the
form of generic reductions. These reductions, called uniform traversal combinators, can
substantially help the theorem proving process by eliminating the need for induction
and can also be an aid in achieving effective program synthesis.

1 Introduction

Recursive structures, such as lists and trees, can be defined inductively in most functional
languages [6]. The recursive types of these structures can be formalized using axiom sets
generated automatically from their type definition, which are basically equivalent to
Hoare’s axioms for recursive data structures [5]. Programs that operate on instances of
these types can be expressed as recursive functions in a pure applicative language. The-
orems about these functions can be proved using induction principles on the structure of
the parameter types of these functions. The Boyer-Moore theorem prover [3], for exam-
ple, proves theorems about recursive functions mechanically by using axioms, definitions,
and previously proved theorems, along with powerful induction mechanisms on recursive
structures. Program synthesis needs techniques similar to those used in theorem prov-
ing. However it is more difficult, partially because induction methods cannot be applied
directly for synthesizing the recursive definition of a function.

Proving theorems about computations over recursive structures can be made easier
by requiring that functions be expressed in stereotyped ways. One kind of stereotyping is
the systematic use of higher order functions that carry out all the traversal of recursive
structures. Such traversal functions can capture common patterns of recursion that occur
often during programming and, therefore, minimize the explicit use of recursion, which
now becomes encapsulated by these functions. The well-known map function that applies
a function to each element of a list is an example of a higher order function that encap-
sulates a traversal. By proving theorems about such traversal functions, some properties
of functions using them can be proven by shallower reasoning than would be required

* This paper is based on work supported by the National Science Foundation under grants IRI-
8606424 and IRI 8822121 and by the Office of Naval Research University Research Initiative
contract, number N00014-86-K-0764

if the traversals were not “pre-analyzed” in isolation. In particular, the use of induction
proofs can be substantially diminished.

Reductions [12, 11] are convenient abstractions for expressing manipulations of bulk
data types represented by recursive structures. They accumulate results as they traverse
a structure and can be used for more computations than are expressible using a mapping
traversal. Reductions tailored to particular recursive types can be generated automati-
cally by a compiler by examining the type details. Reductions over lists and finite sets
are expressive enough to directly simulate all primitive recursive functions [7]. The work
reported here extends these reductions to cover a larger set of recursion patterns and
is motivated by the desire to use them as an aid both in theorem proving and program
synthesis.

In this paper we explore a broad class of traversal functions and prove their funda-
mental properties. We introduce a family of generic functions, called traversal com-
binators, that capture a large family of type-safe primitive recursive functions. Most
functions expressed as recursive programs where only one parameter becomes smaller
at each recursive call are members of this family. This restriction excludes some valid
functions, such as structural equalities and ordering, because they require their two input
structures to be traversed simultaneously.

Our generic functions are combinators as each takes functions as inputs and return a
new function as output (the one that performs the actual reduction). The most important
contribution of this paper is our treatment of the class of traversal combinators resulting
from restricting their input functions to be themselves traversal combinators. We call
these functions uniform traversal combinators. This offers a disciplined and uniform
treatment of functions. This uniformity introduces some nice properties, such as these
combinators being closed under composition, that aid in theorem proving and program
synthesis. In order to prove equality theorems it was necessary to extend our language
to include structural equality as a special primitive. Programs expressed in this algebra
can be tested for functional equivalence in a systematic and complete way, based on the
fact that there is a unique way for expressing a function as a traversal.

Our algebra is at least equivalent to the first order logic. It cannot capture some
interesting functions, such as transitive closure and integer exponentiation. Nevertheless,
our system can express and prove complex theorems. We envision a system where all
theorems expressible in our algebra are proved using the efficient algorithms presented
in this paper, while the rest are tested by a theorem prover based on heuristics, such as
the Boyer-Moore theorem prover.

2 Related Work

The work reported here is a new method for theorem proving with structural induction.
Even though there is some research on analyzing the properties of some highly stereotyped
recursions similar to our traversals, there is no work reported on defining a systematic
method for applying these properties to theorem proving.

The most influential work on realizing the importance of capturing recursions into
a few powerful patterns was by Richard Bird [1]. Even though his work was focused
on specific types, such as lists, it suggested ways of extending these methods to other

types. The work of Grant Malcolm on homomorphisms [8] generalized these methods for
all types. His paper introduced a generic form of homomorphisms, very similar to our
traversal combinators, stated without proof the promotion theorem for any homomor-
phism, and used it for proving some general properties of recursive types. Another work
with similar definitions of recursive patterns, called iterative functions, was by Bohm
and Berarducci [2], based on the second order lambda calculus. The most complete work
on analyzing the properties of stereotyped recursions was by Meijer, Fokkinga, and Pa-
terson [9]. They presented four classes of generic functions: catamorphisms (similar to
our traversal combinators), anamorphisms, hylomorphisms, and paramorphisms. They
proved a large number of generic theorems for each class, such as the fusion law (similar
to our promotion theorem) and the uniqueness property for catamorphisms (for proving
equalities of two functions).

3 Definitions

The language used in this and subsequent sections is ADABTPL [4], which is a strongly-
typed functional programming language [6]. All types described in this paper are canon-
ical types. The set of canonical types is a restricted subset of all the types that can be
expressed in ADABTPL. They are constructed exclusively using 1) parameterization, 2)
recursion, 3) the singleton type constructor, 4) the tuple type constructor, and 5) the
union type constructor. For purposes of explanation. in the definition of a type T we
restrict recursion to be a direct reference to type 7', not to any type expression ¢(7") that
depends on T'. For example, we do not permit the definition of the part-subpart tree
structure where a subpart consists of a list of parts. In Section 8 we will remove this
restriction to allow any recursively defined type.
An example of a tuple type definition is:

person = struct make_person (name: string, address: string);

The tuple value constructor here is make_person of type [string,string]->person,
that is, it takes two strings as input and returns a new object of type person as output.
Examples of polymorphic union types are lists and trees (they have one type parameter
alpha that can be instantiated to any canonical type):

list(alpha) = union
(null: singleton nil,
consp: struct cons (head: alpha, tail: list(alpha)));
tree(alpha) = union
(emptytree: singleton empty,
fulltree: struct node
(info: alpha, left: tree(alpha), right: tree(alpha)));

The singleton type constructor creates a type with only one value. The value is con-
structed by the nullary constructor function named following singleton, such as nil
and empty. Lists and trees have the following constructors:

nil: []->list(alpha)

cons: [alpha,list(alpha)]->list(alpha)
empty: []->tree(alpha)
node: [alpha,tree(alpha),tree(alpha)]->tree(alpha)

In general, any canonical type 7' has a number of constructors Ci,...,C,. More
specifically, a tuple type has only one constructor whose input types are not recursive.
Each alternative of a union type has one constructor and therefore this union type has
all these constructors. We assume that any union type has at least one constructor with
no recursive input types. Nullary constructors of type C; : () =T are considered to be
constant values of type 7. For example, nil is a constructor of type [1->1ist(alpha)
but it is used as a constant of type list(alpha). To make our notation simpler, we
assume that each constructor C; has the variables of type T separated from the other
variables: we write C;(Z7,7;) to indicate that the variables 7; = zi,..., ng are of any
type other than 7" and the variables 77 = i, .. ., ygs are of type T.

One generic function over lists is the list reduction function tc_list(fnil,fcons):

function(alpha,beta)
tc_list (fnil: [J->beta,
fcons: [alpha,list(alpha),betal->beta): [list(alpha)]->beta;
[x]->case x
{ nil -> fnil();
cons(a,r) —> fcons(a,r,tc_list(fnil,fcons)(r)) };

where [z1,...,2,] — exp is a lambda abstraction with variables z1,...,2, and body
exp (expressed as Azp...Az,.exp in lambda calculus) and case matches x with one
of the list constructor patterns. The list of variables following the keyword function,
that is, (alpha,beta) in our example, denotes free type variables of a polymorphic
function definition. Note that the body of tc_list is a lambda abstraction, that is,
this function returns a closure. In other words, since the inputs are functions this is
a combinator. For this reason, applying tc_list of the functions £1 and £2 to a list
1 is written as tc_list(£1,£2)(1). For example, the list length function is computed
by tc_1list([1->0,[?,7,i]1->i+1). where ? is a don’t-care parameter. The list append
function append(x,y) is computed by tc_list([1->y, [a,?,1]->cons(a,1l))(x), while
the list reverse is computed by tc_list([]->nil, [a,?,1]->append(1l,cons(a,nil))).

Reductions can be generalized to cover all canonical types. We call these generalized
reductions traversal combinators. They are combinators because they accept functions as
inputs. such as fnil and fcons in tc_list, and return a new function as output. The
‘traversal” part of the name is justified because the output function of the combinator
traverses the hierarchical structure of its input object.

Definition 1 (Traversal combinator) Let T' be a canonical type with constructors
Ci(73, %) A traversal combinator Hr(f1, ..., fa) 1 T—b, where b is any type, is defined
as follows:

[z] — case

{

Variables 2% in fi(Z7, %, i), where 2L = Hy(f1, ..., f2)(y.), are called accumulative re-

sult variables because they accumulate the results of the recursive calls to Hr(f1.. .., fa),
while variables from Z; and y; are called non-accumulative result variables. Note that if
C;(%;.vi) has k variables of a type other than T' (these are the Z; variables) and m
variables of type T (these are the ; variables), then f; has k 4+ 2m variables: k + m
non-accumulative and m accumulative result variables. For example, in the expression
tc_list([1->y,[a,1,r]->cons(a,r)) (x) variable r is accumulative while a, 1 and x
are not.

From Definition 1 we can see that if f is the traversal combinator Hr(f1,..., fa)

then: /

In addition, if Vi : fi(Z,%.%i) = Ci(T:. %) then f = Az.z; that is, f is the identity
function for T'.

In ADABTPL, a traversal combinator Hr is written as tc_T. For example, the in-
teger type int has two constructors: zero: int and succ: [int]->int. The traversal
combinator over integers is tc_int (fz,fs):

function(beta) tc_int (fz: [l->beta, fs: [int,betal->beta): [int]->beta;
[x]->case x
{ zero —> fz();
succ(i) -> fs(i,tc_int(fz,fs)(i)) };

If beta=int then this combinator can simulate all primitive recursive functions for inte-
gers [10]. For example, tc_int ([1->y, [?,1i]->succ(i)) (x) computes z + y;
tc_int ([]->zero, [?,i]->i+y) (x) computes z * y;
tc_int ([J->true, [?,1]->(i=false)) (x) computes the predicate even(z);
tc_int([J->true,[i,r]->(i=y) or r)(x) computes z < y;
tc_int([J->zero, [i,r]->succ(if (i=y) then zero else r))(x) computes z — y;
and tc_int ([1->succ, [?,f]1->tc_int([1->f(succ(zero)),[?,i]1->£f(i))) (m)(n)
computes the Ackermann function Ack(m,n) [2].

The boolean type is just the union of the singletons true and false. The boolean
traversal combinator tc_boolean is the thinly disguised if-then-else function:

function(beta) tc_boolean
(ftrue: [I1->beta, ffalse: []->beta) : [boolean]->beta;
[x]->case x { true -> ftrue(); false -> ffalse() };

A theorem, very useful for proving properties about traversal combinators is the
promotion theorem [8] (or fusion law [9]). It states the condition for the composition of
a function with a traversal combinator to be a traversal combinator too. It says that
the composition of a function g with a traversal combinator Hr(fi,..., fn) is also a
traversal combinator if the composition of ¢ with each f; promotes the ¢ call only to the
accumulative result variables of f;. This theorem is used in Section 4 as a reduction rule

for composing traversal combinators.

Theorem 1 (Promotion theorem)

if ViVZVYYE 0 g(fi(Z 0 7)) = 6:(T0. T, 9(24). .. g(2!) then

Proof by structural induction: We will prove that Va : g(f(z)) = ¢(z), where f =
Hr(fi.....fn) and ¢ = Hp(d1, ..., ¢n). If z is a construction C;(F;) (that is, C; has
no arguments of type T), then g(f(C;(%7))) = g(fi(7)) = ¢:i(T7) = ¢(Cs(77)). Let z =
C;(7;, ;). We assume the theorem is true for all y : T" that are subtrees of the tree z. Then

$i(Z7, Gi. 6(y1), - - . 0(45,)) = ¢(Ci(T. %)) = ¢(x).0

For example, for lists we have:

9(£0) = 1() o telis telis
VaVle:g(fg(a,lts)):¢2(a7l:g(8))}:>g tedist(fi, fo) = telist(¢1, ¢2)

The promotion theorem for integers is:

9(£0) =) o tein tein
vz'vr:g(fQ(i,r)):(p?(i,g(r))}:‘9 te-int(fi, f2) = teint(¢1, ¢2)

The following corollary says that there is a unique way for expressing a function as a
traversal combinator [9]. It is used in Section 5 for testing the functional equality of two
traversal combinators:

Corollary 1 (Uniqueness property)
VivEYy; : g(Ci(Ti. 7)) = 6i(F0. i 9(h). -+ 9(ui,)) <= 9 = Hr(d1. ... dn)

Proof: =: From the promotion theorem with f;(Z;. %, %) = Ci(T7, %).
<: From Definition 1. O

Structural equalities for all but the trivial canonical types cannot be captured as
traversal combinators. We need to define a special combinator instead. In the following
definition of structural equality we do not separate the arguments of C; of type T' from
the others in order to make the notation more readable:

Definition 2 (Structural Equality) Let T(@) be a canonical type, where @ is a se-
quence of type parameters ay,....a,, r > 0. A structural equality EQr(e1,....&r) :

T(@) x T(a) — boolean, where €; : o; x a; — boolean, over the canonical tyﬁe T(@) is

defined as:
Ci(z1, .. zx,), Cilyr, - yk,) — /\f;lRifj(mj:yj);

other — false

}

where each z; and y; are of type T; j(@) and

T if 3s: T;;(a) = a,
T EQr (e - . &) otherwise

In ADABTPL, a structural equality £Qr is written as equal_T. For example, the list
equality has only one parameter ea that corresponds to the type parameter alpha:

function(alpha) equal_list
(ea: [alpha,alpha]l->boolean) : [list(alpha),list(alpha)]->boolean;
[x,yl->case x, ¥y
{ nil, nil -> true;
cons(a,l), cons(b,r) —> ea(a,b) and equal_list(ea)(l,r);
other -> false };

We will now enhance the definition of structural equality £Qr in such a way that
the composition algorithm in the next section is true. This is done by taking the two
inputs of type T of the output function of £Qr, such as the two lists of equal_list,
as nullary functions and by adding a continuation that maps the result of the equality
to a type 3 (typically this continuation is expressed as a tc_boolean combinator). The
reason behind this enhancement is that when we compose a traversal combinator with an
equality combinator we want to yield another equality combinator so that our language
is closed under composition. This is achieved with the extra continuation ¢.

Definition 3 (Equality Combinator) Let T be a canonical type with structural equal-
ity EQr, [and g functions of type () =T, and ¢ a function of type boolean — (3. The
equality combinator for T is Er : ()— [, defined as:

Parameters ¢ are instantiated to equalities whenever the type parameters of T are
instantiated to types. From now on we will ignore them because they do not affect
our analysis. We will assume that they are hidden in £Q7. The promotion theorem for
equality combinators is simply:

gogT(fth:¢) :‘(/‘T(fhgo¢)
In ADABTPL, an equality combinator &7 is written as eq_T. For example:

function(beta) eq_list
(£f: [0->1ist(int), h: [1->1list(int), c¢: [boolean]->beta) : beta;
c(equal_list(equal_int) (£(),h()));

4 Uniform Traversal Combinators

A very interesting class of traversal combinators results from restricting all functions
fi in Hr(f1....,fa) to be traversal combinators themselves. This restriction is very
important because any theorem or algorithm that refers to such combinators can also
work on each f; recursively. This strict discipline of the function form offers us a more
uniform treatment of functions. Functions have now a tree-like form, where each traversal
combinator Hr(f1,...,fn) is a node and each f; is a child. This structured view of

functions is aimed at simplifying theorem proving and facilitating program synthesis.

Definition 4 (Uniform Traversal combinator) A uniform traversal combinator from
T tob, where T and b are canonical types and all variables z and z are bounded variables,
1s one of the following:

— projection: a lambda abstraction XT. z, where z is a variable of type b;

— construction: an ezpression AT. C(h1(Z), ..., hs(Z)) where C is a constructor of b
and each h; is a uniform traversal combinator;
— traversal: a traversal combinator AT. Hp(f1, ..., fn)(2) from T to b where each f; is

a uniform traversal combinator and variable z is a non-accumulative result variable;
— equality: an equality combinator X\T. Er(f, h,¢), where f, h, and ¢ are uniform
traversal combinators.

For example, integer multiplication is computed by the uniform traversal combinator:
[x,yl->tc_int([1->zero, [?7,i]->tc_int ([1->1i,[?,j]1->succ(j))(y)) (x)
The function reverse(x) computed by:

[x]->tc_list([1->nil,[a,?,1]1->tc_list([]->cons(a,nil),
[c,?,s]->cons(c,s)) (1)) (x)

is not a uniform traversal combinator, because the inner tc_list is on 1 which is an
accumulative result variable. The following is a uniform traversal combinator that when
applied over a list of lists x it returns the list of lengths of x:

[x]->tc_list([1->nil,[a,?,r]—>cons(tc_list([]->zero,
[?,7,i]->succ(i)) (a),r)) (x)

Here the inner tc_list is over a, which is not an accumulative result variable. Integer
subtraction x—y can be computed by the following uniform traversal combinator:

[x,yl->tc_int ([]->zero,
[i,r]->succ(eq_int([]1->i, [1->y,
[z]1->tc_boolean([]->zero,[1->r)(z)))) (x)

Two points need to be clear in the definition of uniform traversal combinators. First,
traversals are over variables, not over expressions. In addition, this definition does not
say that the composition of uniform traversal combinators is also a uniform traversal
combinator. But we will prove next that this is true for any such composition. Second, the
variable z of a traversal must not be an accumulative result variable. This is a necessary
condition for having these combinators closed under composition. The intuition behind
this is that we cannot traverse the values that are accumulated during the traversal of
a structure (but we can pass them as whole values to constructions or to equalities).
This restriction is very important because it substantially limits the expressiveness of
our algebra (it makes our language deterministic logspace instead of polynomial time).
Even though there is an alternative way of expressing the reverse function, there are
some interesting functions, such as the transitive closure and the integer exponentiation,
that cannot be captured in our algebra.

4.1 Composition of Uniform Traversal Combinators

Suppose that we have the composition g(h(Z)), where g and h are uniform traversal
combinators. We can synthesize the traversal ¢ equal to go h by applying the promotion
theorem to break it down into simpler cases. These cases are also made simpler by
applying the promotion theorem again. The following constructive proof composes any
uniform traversal combinators.

Theorem 2 (Composition of Uniform Traversal Combinators)
The composition of uniform traversal combinators is a uniform traversal combinator.

Constructive proof: First we will present the algorithm for composing combinators and
then we will prove that the algorithm is correct. We denote &(g, [A1, ..., h;]. p) the ap-
plication of the function ¢ over hy...h,, where all g, hy,..., h, are uniform traversal
combinators. Variable p contains bindings from combinators to combinators. To find this
composition, the g call is pushed inside the expressions h; by applying the promotion the-
orem. The promotion theorem says that for f = Hr(f1.. Jn)igof= Hr(o1..... ¢n)

i

if g(fi(Z0. 9. %)) = 6:(Z0, 00, 9(28), .. ., (¢). fwp = g(zk) then ¢:(Z;, y;, wi, ..., wj,
is the composition g o f;. provided that all “references to z;, are eliminated (as it will be
proved below). For that reason we pass a binding list p to @ that contains the bindings
g(zL) = wi and zi = f(y.) (from Definition 1). The algorithm consists of the following
rules:

Algorithm 1 (Composition Algorithm)

@(Af.zk,[...,hz,...],p) — hi

D(g. [AT.zi], p) — if pF g(zi)/e then AT.e else AT.g(z:)

DOTC(o ei(T)ee N [ooeshine]p) = ATCO(. Bles[ovn b]p)en)

SN H(..., fi,..)(2).[Ci(w,w)],p) — ®(fi.[w.@,...,. PAT.H(..., fi,..)(2). [wk], p), p)

SOFLEL(f.h.0). [hire],) CATLE (PONTS. [s) p)s OOATR. .. his ..). p). 6)

(9. [AT-L1(f. k. 9)]. p) — AT.Er(f, h, D(g,[6]. p))

D(g. AT Hr(.... fi...)(2)].p) — AT Hz(..., D9, DNT AT f: (Z7, 57 Z0)]. 0')s -)(z)
where p' = p[.... g(z})/wi. zi/HT (... fi ..)(k)]

Expression p[u/w] extends p with the binding from the combinator u to the combinator
w, while expression p F u/w returns true if there is a binding in p from u to w. The last
rule comes from the promotion theorem. It renames the variables of f; from w; to z; but
it binds each u}c in w; to g(zf;). So if later a call g(yfc) is found, it is replaced with w}c
It is obvious that the above reductions are correct and they always terminate, be-
cause one of the two parameters of @ becomes smaller in each recursive call to @. The
resulting expression has the form of a uniform traversal combinator but possibly with
some variables unbound. These are the z! variables from the last rule. The only thing
that remains to prove is that there are no such unbound variables z at the end. But
the last rule applies whenever ¢ is a traversal. In that case @ is called recursively with
g as the first argument. This is true for the fourth and sixth rule too. This recursion
terminates whenever we find a call &(g, [h], p) that does not match these recursive rules.
Therefore, this call must match the second rule. Then, if xz; in AZ.z; is one of the zi n
p then g(z;) is replaced with the variable wi. If 21 does not appear in a call to g, then
2% is replaced with f(y.), where f = Hr(..., fi,...). The only other place that z{ could

appear is in z in the last rule. But this is not permitted because traversals cannot be
done over accumulative result variables. O

For example, suppose that we want to find a traversal combinator tc_list(hi,h2) (x)
equivalent to the composition length(append(x,y)), where append and length are:

append(x,y) = tc_list([]1->y,[a,?,s]->cons(a,s)) (x)
length(x) = tc_list([]->zero,[?,7,i]->succ(i))(x)

We apply the promotion theorem with ¢ =length:

1) h1() = length(y) = tc_list([]1->zero,[?,?,i]l->succ(i))(y)
2) h2(a,?,length(s)) = length(cons(a,s)) = succ(length(s))
=> h2(?,7?,u)=succ(u) where u=length(s)

Therefore, the composition length(append(x,y)) is:
tc_list([1->tc_list([1->zero,[?,?,il->succ(i)) (y),[?,?,ul->succ(u)) (x)

Let length(x)+length(y) be equal to tc_list(h1,h2)(x), where

x+y = tc_int([1->y,[7,jl1->succ(j))(x)

We apply the promotion theorem for lists with

g(x) = tc_int([1->tc_list([1->zero,[?,?,i]l->succ(i))(y),[?,jI1->succ(j)) (x)
to compose g(length(x)) = tc_list(h1l,h2)(x):

1) h1() = g(zero) = tc_list([1->zero,[?,?,i]->succ(i))(y)
2) h2(?,7,g(i)) = g(succ(i)) = succ(g(i))
=> h2(7?,7?,w)=succ(w) where w=g(i)

Therefore, length(x)+length(y) is:
tc_list([1->tc_list([1->zero,[?,?,i]l->succ(i))(y),[?,?,wl->succ(w))(x)
From these two examples we can see that

length(append(x,y)) = length(x)+length(y)

This is an example of a theorem proved without using induction explicitly. Here testing
the equality of length(append(x,y)) and length(x)+length(y) was trivial. In Section
5 we will present a complete method for testing functional equalities.

We will compose now g(£(x)), where:

f(x) = tc_list([1->nil,[a,?,r]->cons(tc_list([]1->zero,
[?,7,i]l->succ(i)) (a),r)) (x)
g(y) = tc_list([1->zero,[b,?,jl1->tc_int([1->j,[?,k]->succ(k)) (b)) (y)

(if x is a list of lists then f(x) returns the list of lengths of x and if y is a list of integers
then g(y) returns the sum of all these integers). The promotion theorem for g(f(x))
equal to tc_list(£f1,£2)(x) gives:

1) £1() = g(nil) = zero
2) f2(a,?,g(r)) = g(cons(tc_list([I->zero,[?,?,i]l->succ(i))(a),r))
= tc_int([1->g(r), [?,k]->succ(k))
(tc_list([]->zero,[?,?,i]l->succ(i)) (a))

Let h(x) = tc_int([1->u, [?,k]->succ(k)) (x), where u=g(r), and
h(tc_list([]->zero,[?,7,il->succ(i))(a)) = tc_list(hi,h2)(a), then:

1) h1i() = u
2) h2(?,?,h(i)) = succ(h(i)) => h2(?,?,w)=succ(w)

Therefore, g(£(x)) is

tc_list([]->zero,[a,?,u]l>tc_list([]->u,[?,?,w]->succ(w)) (a))(x)

5 Equality of Uniform Traversal Combinators

The following algorithm tests whether any two uniform traversal combinators compute
the same function. It is based on the uniqueness property that says that there is a
unique way for expressing a function as a traversal combinator. We will make use of this
algorithm in Section 6 for proving equality theorems.

Theorem 3 (Equality theorem) Let AZ.f(Z) and AT.9(ZT) be two uniform traversal
combinators. Then VT : f(T) = ¢(T) iff EAT.f(T), AT.¢(F), []) = true, where £ is defined

as: (for purposes of explanation we ignore variable renaming)

Algorithm 2 (Equality of Combinators)

E(AT.z, AT .z, p) — true
E(g, AT .z, p) —plkz/g
EAT.C(....€i(2),...), AXT.C(..., hi(Z),...), p) — Vi: E(ei, hi,p)
EAT.Ci(...), AT.Cao(...), p) — false
E(g, Ex(f. k.).p) — if £(f. k. p) then £(g, ¢(true), p)
else £(yg. ¢(false), p)
EAT.g(2), AT H1(. ... bi....)(2).p) — Vi: £(g(Ci(T0. 7). ATAT:-6:(T0. 7. 7).)

where p’' = p[..., 2z /9(v}). - .]

Proof: From the uniqueness property we have:
ViVEVT © 9(Ci(T0.) = 6:(T0. T 9(y1). ... 9(4l) & 9=Hr(d1.....0n)

That is, g is equal to Hr(...,¢;,...) if and only if for all ¢: g(C;(7;, %)) is equal to
¢i(%7, i, zi), where 21 = g(y.) (this is the last rule). In that case, p is extended to
include all bindings z]ic = g(y}c) so that if later we need to test whether zfc = g(y};) then

this is true (this is the second rule). O

For example, suppose that we want to prove the commutativity law for integer addition
x+y==y+x, where == is the structural equality equal_int for integers. This is expressed
as:

te_int([1->y,[7,i]->succ(i)) (x) == tc_int([1->x,[?,j1->succ(j)) (y)

Let g(y)=tc_int([1->y, [?,il->succ(i)) (x) then we apply the uniqueness property
for the equality g(y)==tc_int([1->x,[?,jl->succ(j)) (y):

1) y=zero: (g(zero)==x) = (tc_int([I->zero,[?,i]->succ(i))(x)==x) = true
2) y=succ(j): (g(succ(j))==succ(g(j))) =
(te_int ([1->succ(j), [?,i]1->succ(i)) (x)==succ(g(j)))

Let £(x)=succ(g(j))). We apply the uniqueness property again:

1) x=zero: (f(zero)==succ(j)) = (succ(j)==succ(j)) = true
2) x=succ(i): (f(succ(i))==succ(£f(i))) = (succ(f(i))==succ(£f(i))) = true

6 Theorem Proving

The algorithms for composing uniform traversal combinators and for testing their func-
tional equalities can be applied for proving theorems about uniform traversal combina-
tors. Suppose that we want to prove that an expression ¢(Z) is always true. First we need
to find all uniform traversal combinators associated with each function call in e. Then
we use the composition algorithm to synthesize the uniform traversal combinator f(%)
equivalent to e(Z). Then we are left with the simpler task of proving whether f(Z) is
always true (a tautology).

Algorithm 3 (Tautology) Let f(Z) be a uniform traversal combinator of type boolean.
Then VT : f(T) = ¢, where ¢ is either true or false, iff T(f(T),c), where T is defined as:

7 (e, c) — true

T(ATAY.Y;, €) — true (yi is an accumulative result variable)
TATHr(fr, ... fo)(2),¢) = Vi: T(fi,c)

T(ATEr(f. h.), ¢) — ifE(f, R []) then T (é(true), c) else T (¢(false), —c)
otherwise — false

Suppose that we want to prove the associativity law for integer multiplication, that
is: (x*y)#*z==x*(y*z), where multiplication is computed by:

x*y = tc_int([1->zero, [?,i]->tc_int([1->i,[?,j]1->succ(j)) (y)) (x)
We start by composing (x*y)*z. We apply the promotion theorem with
g(u) = u*z = tc_int([I->zero,[?,i]l->tc_int([1->1,[7,jl1->succ(j))(z))(u)

Let g(tc_int([1->zero,[?,i]->tc_int([1->i,[?,jl->succ(j))(y))(x)) be equal
to tc_int (£1,£2) (x). Then from the promotion theorem we have:

1) £1() = g(zero) = zero
2) £2(7,g(1)) = g(tec_int([1->1,[?,j1->succ(j))(y)) = tc_int(h1,h2)(y)

Let m=g(i). We apply the promotion theorem again:

1) h1() = g(i) =
2) h2(7,g(3))

m
= g(succ(j)) = tc_int([1->g(j), [?,k]->succ(k))(z)
=> h2(?,w) =

te_int([1->w, [?,k]->succ(k)) (=)

Therefore, (x*y)*z is

tc_int ([1->zero,
[?,m]->tc_int([1->m, [7,w]->tc_int([1->w, [?,k]->succ(k))(2)) (y)) (x)

We will compose now x*(y*z):
x*(y*z) = tc_int([]->zero,[?,i]->tc_int([]1->1i,[?,jl->succ(j)) (y*z)) (x)
Let g(u) = u+i = tc_int([1->1,[?,j]->succ(j)) (u). Expression x*(y*z) becomes:

tc_int (£1,£2)(y)
tc_int([J->zero,[?,ul->tc_int ([1->u, [?,w]->succ(w)) (2))(y)

g(y*z)

and the promotion theorem gives:

1) £1() = g(zero) = 1
2) £2(?7,g(uw)) = g(tc_int([I1->u, [?,w]->succ(w))(2)) = tc_int(hil,h2)(2)

Let k=g(u). We apply the promotion theorem again:

1) h1() = g(u) =k
2) h2(?,g(w)) = g(succ(w)) = succ(g(w)) => h2(?,m) = succ(m)

Therefore, x*(y*z) is

tc_int ([1->zero,
[7,i]->tc_int([1->i, [?7,k]->tc_int([1->k, [?,m]->succ(m)) (z)) (y)) (x)

Finally, we can see that (x*y)#*z is equal to x*(y*z).

7 Program Synthesis

Let ¢ and ¢ be uniform traversal combinators. The following algorithm synthesizes all
uniform traversal combinators f such that g(f(Z)) = ¢(%) is true. We express that as:
f € S(g.¢). that is, S(g,¢) returns the set of uniform traversal combinators f that
satisfy ¢(f(Z)) = ¢(T). If ¢ is a traversal, then from the promotion theorem we have
Vi g(fi(T v %) = 6i(Fi Ui 9(28), ..., g(2h)). If all such f; are found, then f is
Ho(fi, ..., fs). But :(F7, 7 9(2%), ..., g(z})) is the composition of the uniform traver-
sal combinators ¢; and ¢ and thus it can be derived using the composition algorithm.
Therefore, we need to synthesize all f; that satisfy the equation ¢(f; (%7, i, z;)) = a known
traversal. This is achieved by calling the same algorithm for synthesizing combinators
recursively. The detailed algorithm is the following;:

Algorithm 4 (Synthesis algorithm)

S(Ay.y. 9) —{o}

S(Ay.C(...), Az.2;) — S(Ay.C(..)., AT G.C(T5. %))
SAy.C(....gi,..),C(.... hi,...) — mgu(....8(gi. hi)....)

S(Hr (..). X725 — S(Hr(o.) AEH (. Cir)
S(g. Hr (. NEAGNT (T T 7)) — TH (e v)

fi S S(g@(¢z [I_ZE .. .,g(z};] []))}
S(Hr(...),C(..)) — U; S@Hr(...),Ci,). C(...))

where C; 1s a constructor of T

where mgu(g1, . .., gn) returns the most general unifier for all gz. The last rule tries every

constructor C; of T as the output value of f(Z)
For example, suppose that there is a uniform traversal combinator ¢ that satisfies:

length(g(x,y)) = tc_list([1->tc_list([I->zero,[?,?,j]1->succ(j))(y),
[?,7,i]1->succ(i)) (x)

where length is tc_list([]->zero,[?,7,i]->succ(i)). We want to find every g that
satisfies the above equation. Let g be tc_list(gl,g2) (x). From the promotion theorem
we have:

1) length(gl) = tc_list([]->zero,[?,7,jl->succ(j)) (y)
let gl=tc_list(h1,h2)(y) then
1.1) length(hl) = zero
[1->zero is the only component of length that returns zero => hl = nil
1.2) length(h2(c,s,j)) = succ(length(j))
[?,7,i]->succ(i) is the only component of length that returns succ.
Let h2(c,s,j)=cons(x1,x2) then length(cons(x1,x2))=succ(length(j))
=> succ(length(x2))=succ(length(j)) => h2(c,s,j) = cons(x1,j)
2) length(g2(b,r,i)) = succ(length(i)) => g2(b,r,i) = cons(x3,1i)

Therefore, g(x,y) is:
tc_list([1->tc_list(nil,[?,?,j]->cons(x1,j))(y),[?,?,i]->cons(x3,1))(x)

where x1 and x3 are universally quantified variables that yield a class of solutions for
g(x,y).

8 Model Extensions

We can extend the definition of canonical types to include all recursively defined types.
In that case, if a type T has a constructor C(...,z;,...), where z; is of type t(T),
that is a type expression that refers to 7', then instead of calling Hr recursively in the
definition of Hr we call My:(Hy), where T'(a) = t(a), a is a type parameter, and
M is the generic map over T [12]. A generic map of a canonical type T(ay, ..., a,)

is the function My (my,...,m,) that assigns a mapping m; to each type parameter

map Mrg(my,...,my) is a uniform traversal combinator if all m; are uniform traver-
sal combinators. For example, the map over lists is map_list(m) and it is equal to
tc_list([]->nil,[a,?,r]->cons(m(a),r)).

We can also extend our model to include higher order expressions: Let T' =T} x ... x
T, —Tp be a function type. The uniform traversal combinator for T"is Hr (e, r1,...,7n)
T— (3, where ¢: Ty— 3 and r; : —T;, and it is defined as Af. ¢(f(r1(),....rn())). Again
variable f is not permitted to be an accumulative result variable. The promotion theorem
for T is simply g o Hr(e,71....,7n) = Hr(goc,r1,...,ry). The composition algorithm
is still correct because if h is a uniform traversal combinator so is Hr (¢, r1,...,rn)(h).
That way we can prove high-order theorems, that is, for any function of a specific type.

In ADABTPL. a combinator for the type T' = T} x ... x T, — Ty is written as
tc_Tix...xTn_TO. For example, the following proves that the list map distributes over

append:

map_list(f) (append(x,y)) = append(map_list(f)(x),map_list(£f)(y))

where map_list(£f)=tc_list([1->nil, [b,?,r1->tc_a_b([z]->cons(z,r),[1->b)(£)).
We apply the promotion theorem for g(append(x,y))=tc_list(£1,£2)(x), where
g(x)=map_list(£)(x):

£1() = g(y) = map_list(£)(y)
£2(b,7,g(r)) = glcons(b,r)) = tc_a_b([z]->cons(z,g(r)),[1->b) (£)
=> £f2(b,?,u) = tc_a_b([z]l->cons(z,u), [1->b)(£))

Therefore, map_list (£) (append(x,y)) is
tc_list([1->map_list(f)(y),[b,?,ul->tc_a_b([z]->cons(z,u), [1->b)(£f)) (x)

which is the same with append(map_list(f)(x),map_list(£)(y)).

9 Acknowledgments

We are grateful to Neil Immerman and Sushant Patnaik for their help in analyzing the
expressiveness of our language.

References

1. R. S. Bird. The Promotion and Accumulation Strategies in Transformational Program-
ming. ACM Transactions on Programming Languages and Systems, 6(4):487-504, October
1984.

2. C. Bohm and A. Berarducci. Automatic Synthesis of Typed A-Programs on Term Algebras.
Theoretical Computer Science, 39:135-154, 1985.

3. R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New York, 1979.

4. L. Fegaras, T. Sheard, and D. Stemple. The ADABTPL Type System. In Proceedings of the
Second International Workshop on Database Programming Languages, Salishan, Oregon,
pages 243-254, 1989.

5. C. A. Hoare. Recursive Data Structures. Journal of the ACM, 4(2):105-132, June 1975.

6. P. Hudak. Conception, Evolution, and Application of Functional Programming Languages.
ACM Computing Surveys, 21(3):359-411, September 1989.

7. N. Immerman, S. Patnaik, and D. Stemple. The Expressiveness of a Family of Finite Set
Languages. Proceedings of the Tenth ACM Symposium on Principles of Database Systems,
Denver, Colorado, pages 37-52, May 1991.

8. G. Malcolm. Homomorphisms and Promotability. In Mathematics of Program Construc-
tion, pages 335-347. Springer-Verlag, June 1989.

9. E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas, Lenses,
Envelopes and Barbed Wire. In fifth ACM Conference on Functional Programming Lan-
guages and Computer Architecture, Cambridge Massachusetts, pages 124-144, August 1991.

10. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.

11. T. Sheard. Generalized Recursive Structure Combinators. Technical report, University of
Massachusetts at Amherst, 1989. COINS Technical Report 89-26.

12. T. Sheard. Automatic Generation and Use of Abstract Structure Operators. ACM Trans-
actions on Programming Languages and Systems, 19(4):531-557, October 1991.

