next up previous contents
Next: 3.2.2 Predictive Parsing Using Up: 3.2 Predictive Parsing Previous: 3.2 Predictive Parsing   Contents

3.2.1 Recursive Descent Parsing

Consider the transformed CFG G1 again:

E ::= T E'
E' ::= + T E'
     | - T E'
T ::= F T'
T' ::= * F T'
     | / F T'
F ::= num
    | id
Here is a Java program that parses this grammar:
static void E () { T(); Eprime(); }
static void Eprime () {
  if (current_token == PLUS)
     { read_next_token(); T(); Eprime(); }
  else if (current_token == MINUS)
     { read_next_token(); T(); Eprime(); };
static void T () { F(); Tprime(); }
static void Tprime() {
  if (current_token == TIMES)
     { read_next_token(); F(); Tprime(); }
  else if (current_token == DIV)
     { read_next_token(); F(); Tprime(); };
static void F () {
  if (current_token == NUM || current_token == ID)
  else error();
In general, for each nonterminal we write one procedure; For each nonterminal in the rhs of a rule, we call the nonterminal's procedure; For each terminal, we compare the current token with the expected terminal. If there are multiple productions for a nonterminal, we use an if-then-else statement to choose which rule to apply. If there was a left recursion in a production, we would have had an infinite recursion.

Please look at the following web page for a demo of the recursive descent algorithm using Java aplets:

fegaras 2012-01-10