Information Retrieval and Web Search Engines

© Leonidas Fegaras
University of Texas at Arlington
Information Retrieval (IR)

- Originally, used for document management systems
- Popular now due to web search engines
- IR has some similarities with traditional databases
 - very large data sets
 - use of indexes for fast access
- but IR has many differences from traditional databases
 - unstructured data (text documents)
 - keyword search queries
 - eg, “windows and (glass or door) and not Microsoft”
 - read mostly -- but addition of new documents occasionally (off-line)
 - requires relevance ranking to retrieve the top-k results
 - imprecise semantics
Inverted File

- Also known as *inverted index*
- Maps words into document locations (URLs)
 - from each word, you get the set of documents that contain this word
- Relational schema

  ```
  Document ( id, URL )   key is id
  Word ( term, docID )   key is the combination of term/docID
  ```

- ... but IR systems do not use a RDBMS
 - they may use a B+tree or a hash index without a table
 - the index delivers the list of documents containing the word sorted by docID

- Keyword queries
 - the result of each query term is a list of documents sorted by docID
 - query1 and query2: list intersection (merging)
 - query1 or query2: list union
 - query1 and not query2: list subtraction
Keyword Queries in SQL

- Single-table selects plus UNION, INTERSECT, and EXCEPT

 "windows and (glass or door) and not Microsoft"

 -->

 \[
 (\text{select docID from Word where term=\"windows\"}) \\
 \text{intersect} \\
 (\text{select docID from Word where term=\"glass\" or term=\"door\"}) \\
 \text{except} \\
 (\text{select docID from Word where term=\"Microsoft\"})
 \]

- Never done this way in IR!

 - they use special-purpose, optimized search engines

- Needs also relevance ranking

 - requires statistics

 - how often a term appears in a document?

 - how rare the term is among all documents?

 - not easy to calculate using RDBMS
Better Schema

- Need to include
 - number of documents containing the term
 - the term position in document (for checking term proximity)

 Document (id, URL)
 Word (termID, term, count)
 Posting (termID, position, docID)

- Integrity constraint: for each term (tid,term,cnt) in Word,
 cnt = count(select distinct docID from Posting where termID=tid)

- Keyword query: “computer and science”
 select distinct p1.docID
 from Word w1, Posting p1, Word w2, Posting p2
 where w1.term="computer" and w2.term="science"
 and w1.termID=p1.termID and w2.termID=p2.termID
 and p1.docID=p2.docID
 order by abs(p1.position-p2.position)
The Vector Space Model

- A model for estimating relevance ranking and document similarities
- Documents and queries are represented as vectors of floats
 - vector elements correspond to indexed terms (words)
 - vector values are term weights
 - highly sparse vector, usually implemented by inverted lists
- *Stop words* are considered irrelevant and are eliminated
 - e.g., certain words such as “the”, “a”, and HTML tags such as `<p>`
- Terms are usually *stems*
 - *stemming*: use language language-specific rules to convert words to their basic forms
 - e.g., “toys”, “toying”, are converted to “toy”
Example

- Document vectors can indicate frequency of terms in document

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>science</th>
<th>engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D4</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

- A query vector indicates the weight (i.e., the importance) you give to a search term

<table>
<thead>
<tr>
<th></th>
<th>computer</th>
<th>science</th>
<th>engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

- If documents and the query are represented as points in a multidimensional space (one dimension per term), then relevance ranking is space proximity
 - the best match is the document closest to the query in the multidimensional space
TF-IDF Weights

For a given document i and a term k we have:

- the *term frequency* tf_{ik} of term k in document i
- the *inverse document frequency* idf_k of term k, given by
 \[
 idf_k = \log\left(\frac{N}{n_k}\right)
 \]
 where N is the total number of documents and n_k is the number of documents that contain the term k

The *weight* is $w_{ik} = tf_{ik} * idf_k$

Normalization: force w_{ik} to be between 0 and 1

- that way, weights resemble probabilities
 \[
 w_{ik}' = \frac{w_{ik}}{\sqrt{\sum_{j=1}^{n} w_{ij}^2}}
 \]

Relevance of a query Q to a document D_i:

\[
\text{sim}(Q, D_i) = \sum_{k=1}^{n} q_k * w_{ik}
\]
Example

<table>
<thead>
<tr>
<th>tf_{ik}</th>
<th>computer</th>
<th>science</th>
<th>engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>idf_k</th>
<th>computer</th>
<th>science</th>
<th>engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>log(4/2) = 0.3</td>
<td>log(4/3) = 0.12</td>
<td>log(4/3) = 0.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query</th>
<th>computer</th>
<th>science</th>
<th>engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w_{ik}</th>
<th>computer</th>
<th>science</th>
<th>engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.6</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>D2</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>0.3</td>
<td>0.48</td>
<td>0.24</td>
</tr>
<tr>
<td>D4</td>
<td>0.3</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$sim(Q,D_i)$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.6+2*0.36 = 1.32</td>
</tr>
<tr>
<td>D2</td>
<td>2*0.12 = 0.24</td>
</tr>
<tr>
<td>D3</td>
<td>0.3+2*0.24 = 0.78</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
</tr>
</tbody>
</table>

so document D1 is the best match
Document Similarity

- Pairwise document similarity
 \[\text{sim}(D_i, D_j) = \sum_{k=1}^{w_{ik} \times w_{jk}} \]

- Normalization: divide by \(\sqrt{\sum_{k=1}^{w_{ik}^2}} \) and by \(\sqrt{\sum_{k=1}^{w_{jk}^2}} \)

- Text clustering
 - finds overall similarities among groups of documents

- How to expand the search?
 - thesaurus expansion
 - relevance feedback
Web Search Engines

- These are IR systems for web-accessible HTML pages
- Inverse indexes are populated by web-crawlers off-line
 1) new index entries are created from the HTML documents
 2) then, the new entries are sorted
 3) finally, the results are merged with the existing index and a new index is created
- Relevance ranking goes beyond TFxIDF
 - page popularity
 - gives higher score to frequently visited web pages
 - based on the importance of other pages that refer to this page
 - if a page is referred to by an “important” page, then it is also “important”
 - Google's PageRank
The Indexer converts each crawled HTML document into a collection of “hits” and puts them into “barrels”

- each barrel contains postings for a range of words
- each barrel has one Lexicon with entries (word, wordID, docs, offset)
 - docs is the number of documents containing the word
 - offset points to the first entry in the Posting (the first hit)
 - the Lexicon is always in memory
- a hit is (wordID, position, font, type). It is 2 bytes.
 - wordID is a reference to a word in the “lexicon”
 - position is the position of the word in the document
 - font indicates whether the word is inside , , etc
 - the type is a flag that indicates a fancy hit (word in title, URL, etc) or not
PageRank

- Assumption: if the pages pointing to a page are important, then the latter page is also important

- Let $A_1, A_2, ..., A_n$ be the pages that point to the page A. Then the PageRank of A is

 $$PR(A) = (1-d) + d \left(\frac{PR(A_1)}{C(A_1)} + ... + \frac{PR(A_n)}{C(A_n)} \right)$$

where $C(A_i)$ is the number of outgoing links from A_i

- The PR vector is the principal eigenvector of the link matrix of the web
 - can be computed as the fixpoint of the above equation
 - in practice, it is computed incrementally

- Google computes the relevance of a page for a given search by first computing an TFxIDF relevance and then adjusting it by taking into account the PR of the top-ranked pages