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Database systems based on the relational model offer a high degree of data
independence. In these systems the semantics of abstract data structures and
their operations can be significantly independent of their implementations. This
separation of specification from implementation offers many opportunities for
optimization which would otherwise be lost if abstract operations were ex-
pressed by a detailed algorithm. For example, queries in the relational model
are expressed declaratively, without any concern about efficiency, relying on the
query optimizer to select the best evaluation plan among a variety of available
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Abstract

This paper presents a new query algebra based on fold iterations that fa-
cilitates database implementation. An algebraic normalization algorithm
is introduced that reduces any program expressed in this algebra to a
canonical form that generates no intermediate data structures and has
no more nested iterations than the initial program. Given any inductive
data type, our system can automatically synthesize the definition of the
fold operator that traverses instances of this type, and, more importantly,
it can produce the necessary transformations for optimizing expressions
involving this fold operator.

Database implementation in our framework is controlled by user-
defined mappings from abstract types to physical structures. The op-
timizer uses this information to translate abstract programs and queries
into concrete algorithms that conform to the type transformation. Data-
base query optimization can be viewed as a search over the reduced space
of all canonical forms which are equivalent to the query after type trans-
formation and normalization. The optimization space can be expanded to
capture semantic information expressed as integrity constraints attached
to types. This information may include specifications of materialized
views and of alternative access paths.

The contribution of this paper is twofold. First, a new efficient al-
gebraic optimization algorithm is introduced, based on loop fusion and
partial evaluation, that normalizes a large class of queries over a wide
spectrum of bulk data structures. Second, an effective query optimizer
is described that searches the limited space of equivalent canonical forms
for optimal programs, using additional semantic information to generate
more alternatives.

Introduction

access plans and algorithms [13].



Modern database applications require more advanced data structures and
more expressive operations than those provided by the relational model. If
complex storage structures are mapped into relational tables then semantic in-
formation is often lost. For example, information about object interconnection
needs to be reconstructed in object queries by using joins, if object hierarchies
are mapped into flat tables. This lost information offers more opportunities
for optimization when stated explicitly in the schema description, as it would
if the model supported these complex data structures directly.

In addition, ordered bulk data structures, such as lists, trees, and arrays,
cannot be captured directly in relational tables as they are by definition un-
ordered. This implicit ordering information must be captured explicitly or it
may introduce inconsistencies in the resulting programs. On the other hand,
if sets are represented as ordered sequences then the optimizer may miss op-
portunities for optimization. For example, using a commutative union (in a
set based implementation) may allow a more efficient translation than using an
noncommutative append (in a list based implementation).

These observations can be generalized: when a system is underspecified
inconsistencies may be introduced in its translation, while when a system is
overspecified optimization opportunities are lost. A specification framework
must have enough modeling power to directly capture all semantic informa-
tion of the system being specified. That way, the program optimizer can use
semantic information directly to make intelligent decisions. Consequently, re-
strictions on data values, such as integrity constraints attached to the database
state, should be provided explicitly as part of the schema, so that they may be
used to generate alternatives during optimization [15].

There have been many proposals for query algebras that are more expressive
than the relational algebra. Much research into these designs has been guided
by the belief that the more the expressiveness (functionality) of a language the
more difficult the program optimization task becomes. This paper will demon-
strate that this belief is not necessarily true by presenting a query algebra that
is both expressive enough to capture most polynomial time functions and still
facilitates optimization. We believe that the infeasibility of optimization is con-
trolled not by reducing the expressiveness of the language, but by reducing the
number of possible program schemes that compute a function. The search for
an optimal solution is more efficient if there is a smaller number of program
schemes to consider. A provision must be taken, though, that most candidates
for optimal solution are always within this search space. Therefore, there is a
tension that needs to be resolved: the more programs schemes considered, the
better optimized the resulting programs, but the more optimization time spent.
In our approach program schemes that cannot be optimal under any circum-
stances will not be considered. By using an algebraic method that improves
programs independently of the database state, we reduce the search space size
by avoiding states that correspond to suboptimal programs.

The reduced number of program schemes is achieved by requiring that all
structure traversals be expressed in terms of a very small number of stereo-
typed generic recursion schemes. We have only one traversal mechanism in our
algebra: the fold operation [14, 8, 7]. Given any inductive data type (e.g. tu-
ple, set, list, tree, boolean, and integer) our system is capable of automatically
synthesizing the definition of the fold operator that traverses instances of this
type. If some simple, easily recognizable, syntactic restrictions to this algebra



are imposed, then some very nice properties result. For example, any operation
expressed in this algebra can always be reduced, by a very simple and efficient
algorithm, to a canonical form. We call this algorithm the normalization algo-
rithm. This canonical form is, in a way, optimal, since it does not generate any
intermediate data structures (which might be generated when function calls are
nested, passing intermediate results from one to another). It also has no more
nested iterations than the program before the normalization. Note that elim-
ination of intermediate data structures does not necessarily imply optimality.
In fact, when we have a duplicate computation it is more efficient to pull out
this computation, assign its intermediate result to a variable, and use the value
of this variable instead of performing the computation twice. Fortunately, this
type of program improvement can be done at any stage either before or after
program normalization. We therefore choose to ignore it at this phase.

The normalization algorithm is both a loop fusion method [16, 4] that
merges two cascaded iterations® into one, and an online partial evaluator [5]
that specializes programs with respect to their static input. Based upon a
generic promotion theorem, the algorithm is aided by the explicit inductive
structure of folds rather than searching for implicit structure in an analysis
phase, as is done in most program transformation systems [6].

The normalization algorithm devotes the same effort to all traversals, in-
dependent of the data structures they traverse. In our model there are no
primitive types, such as integers or booleans; all types are user-defined data
structures. Therefore, all primitive operations, such as integer addition and
boolean conjunction, are computed using fold traversals. In this way all data
types and the operations upon them are treated uniformly. Some researchers
in the database community believe that a query optimizer should not spend
time optimizing non-bulk operations, such as integer and boolean operations,
since bulk operations involve heavy I/O use which is considerably slower than
the CPU calculations. We believe that this argument is not necessarily true for
two reasons. First, non-bulk operations may be mixed with bulk operations. as
in a nested SQL statement where a selection predicate contains another SQL
statement. Second, rewriting a non-bulk operation may reveal a new transfor-
mation for a bulk operation which could otherwise be unavailable. For example,
transforming a join predicate into disjunctive normal form may trigger new join
transformations.

The normalization algorithm can be used for algebraic optimization in both
the abstract and physical layers. In fact, it generalizes many algebraic opti-
mization algorithms found in the database literature [10, 1]. In addition, loop
fusion can effectively capture most stream-based pipelining techniques used in
relational query evaluation for propagating values a tuple at a time instead of
a table at a time between relational operations (this is achieved by fusing the
loops of two nested relational operations into one loop). This ability to fuse
loops serves as an additional argument for defining relational operators, such
as the relational join, not as opaque abstractions that satisfy some properties,
but as abstractions with an explicit predefined control structure. That way
the control of an operator can be fused with the control of another operator
resulting in a more efficient program. Our fold operator can be seen as an

1That is, a loop that iterates over the result of another loop, such as two piped filters, not
a nested loop in an imperative language.



algebraic formulation of a pipe. The difference is that, in our framework, pipes
are constructed during optimization time, not during evaluation time. Thus we
avoid the usual overhead of pipe synchronization.

Given a canonical form in our algebra computing a function f, it is easy to
discover all other equivalent canonical forms, that is, all canonical forms that
compute the same function f. In fact, the canonical forms that are equivalent to
f are those that are derived mainly by commutativity laws (since associative
forms in our algebra have the same canonical form). Our optimizer consid-
ers only the canonical forms equivalent to the one derived by applying the
normalization algorithm to the original program that represents a query. Non-
canonical programs are not considered at all. This is desirable since they can all
be reduced to a more efficient canonical form from this class. This restricts the
search for the best evaluation plan to a small, finite, class of programs that con-
tains very few suboptimal programs. Note that by specifying a join as a nested
fold, for example, we have not restricted its implementation to nested-loop join,
because the optimizer can always discover algorithms, such as the sort-merge
join, that have the same functionality as this nested fold but possibly different
implementations. Therefore, we gain all the optimization opportunities of a
highly declarative algebra in a framework of a more operational language that
completely automates algebraic optimization. Furthermore, semantic informa-
tion, such as integrity constraints, can also be reduced to canonical form and
then be used to expand the search space of alternatives, offering different access
paths for evaluating the same program. We have reduced the search space by
eliminating suboptimal goals, but we have also expanded it by adding more
alternatives that correspond to additional semantic information.

One important component of our algebraic query optimizer is type transfor-
mation [9]. In this framework we specify how an abstract data type is mapped
into a concrete type (a data structure in the physical layer) by providing an
abstraction function. This function, expressed in canonical form, maps any
structure of the concrete type into a value of the abstract type. It is in general
a many-to-one function. For example, a set can be implemented as an ordered
sequence, such as a list, where the abstraction function inserts each element of
the list into an initially empty set. Integrity constraints in the physical layer
specify materialized views and access paths. such as a secondary indices. In-
tegrity constraints in the logical layer represent conceptual views that may or
may not be materialized, depending on the abstraction function and the stor-
age structure they are mapped to. The abstraction functions and the integrity
constraints in both the logical and physical layers form the necessary theory
that specifies the database implementation. The query optimizer will use this
transformation theory to derive efficient algorithms that compute queries as
well as to verify the resulting translation.

The physical layer consists of a finite number of prespecified concrete prim-
itives. In our translation framework these concrete primitives are assigned a
behavior expressed in canonical form. The actual implementation of a concrete
operation, such as the implementation for B-tree-find, may be many pages of C
code, but its actual behavior can be described by few lines of canonical program.
We will assume that the behavior of a concrete primitive is consistent with its
implementation without any attempt to prove it. Each concrete primitive is
also assigned a cost function that estimates its cost from the cost parameters
of its input values, such as set cardinalities. The goal of the optimizer is to find



a composition of concrete primitives such that the composition of their asso-
ciated behaviors is equal to the canonical program that represents the initial
query after type transformation. Furthermore, this composition must have the
best cost among all such compositions with the same functionality. We call this
algorithm the fold optimization algorithm. It is in a sense the inverse of the
normalization algorithm, which reduces compositions to canonical form. The
optimization algorithm is a search-based algorithm that searches the limited
space of canonical forms. It takes into account semantic information, expressed
as integrity constraints, to widen the search space, producing alternative access
paths and algorithms.

2 Definitions

In this section we define the fold operator for a family of inductively defined
algebraic data type. We will analyze sets and set folds in Section 4. There
are no primitive types in our model, because integers, booleans and strings
are defined in the same way as any bulk data type. This is desirable since we
want all operations over any data type to be treated uniformly, in a context
of a simple universal optimization algorithm. Our fold operator is similar to,
but more expressive than, the pump operator [1] and the structural recursion
operator [3]. The difference is that our system can derive the fold definition for
most data types automatically by examining the type details.

The type definitions considered in this section are the simple sums-of-
product types defined by using recursive equations of the form:

T(al,...,ap) = 01(8171 :t1,1:~~~;51,m1 :tlfml)
| Cn(5n¢1 :tn¢1:-~~:5n¢mn :tnrmn)
where a1, ..., o, denote type variables, the C; are unique names of value con-

structor functions (we use the convention that the first letter of a constructor
name is always in uppercase), s; ; are names of selector functions, ¢; ; are ei-
ther type variables (in the set ai,...,a,) or the type T'(aq, ..., a,) itself. For

example, the following are simple sums-of-products type definitions:

boolean = False | True
prod(e,5) = Pair(fst:a,snd: f)
list(a) = Nil | Cons(hd : a, tail : list(a))
nat = Zero | Succ(pred : nat)
tree(a) = Tip(info: a) | Node(left : tree(a), right : tree(a))
person = Make_person(name : string, ssn : nat, address : string)

where string = list(nat)

Before expressing the general definition of the fold operator for any sums-
of-products type, we give the definition of the list fold as an example. If a
function ¢ : list(a) — § is defined by the following recursive equations:

g(Nil) = ful)
9(Cons(a,l)) = fe(a,g(1))



for some functions f,, and f., then g is a list fold: g = fold””(fn . fe). Consider
for example the length of a list computed by the following equations:

length(Nil)
length(Cons(a,!))

Zero

Succ(length(!))

In this case, f,() = Zero = f, = A().Zero and f.(a,r) = Succ(r) = f. =
Ma, 7).Suce(r)?. Therefore,

length(z) = fold“**(X().Zero, A(a, r).Succ(r)) =
Note that f. in fold””(fn,fc) has the form A(a,r).e, which is a lambda ab-

straction that has two parameters: a, bound to the current head of the list and
r. bound to the recursively transformed tail of the list. That is, if the output
type of the list fold is 8 then the type of r is also 3.

In general, the fold operation over a sums-of-products type will use a pattern
of recursion related to the pattern of recursion in the type definition. This
recursion pattern is captured by the functor E. Functor F. like functors in
category theory, satisfies E(id) = id and E(g) o E(h) = E(g o h), where g and
h are functions, o is function composition, and id is the identity function (i.e.
id(x) = #). These properties can be easily verified for our definition below.

Definition 1 (The Functor E) Associated with each constructor C; of type

ENf) = Mziv o #im)(K(zi1), o K(2im,))

where the bound variables x; j have type t;; and K(x;;) is either f(z;;), if
tij =T(a1,...,ap), or z; j, otherwise.

For example, for type list: E%SH(f) = A().() and EEsE (f) = A=z, y).(=, f(y)).

Cons
With this notation it is now possible to describe the fold operator for any

simple sums-of-products type.

Definition 2 (Fold) The fold function over T(a ...ap) is defined by the fol-
lowing set of recursive equations, one for each constructor C; of T':

fold” (f) o Ci = fi o EF (fold” (F))
where f = (fi...-. Jn)-

For example, the list fold is defined recursively by the following two equations
(in applicative form):

fold"**(f,. f.) Nil £20) '
fOItht(fn . fe)Cons(a,l) = fe(a, fOldlZSt(fn S

The nat fold is defined as:

fold"(f,, fs) Zero = £0
fOIdnat(fz fs)Suce(r) = f; (fOIdnat(fz Js) )
2X(%1,...,Tn).€ is a lambda abstraction, expressed as Azj..... Azp.€ in lambda calculus,
and (€1, ...,€n) constructs a tuple of n values. Application f(e1,...,€en) can be seen as the
application of the unary function f to the tuple (e1,...,€en).



The tree fold is defined as:

fold”*(f;, fo) Tip(a) = fula)
fold™**(fy. fa) Node(l.r) = fu(fold"**(fy, fo) L. old"**(f;. fu) 7)

The boolean fold is defined as:

foldboolean (ff : ft) False = ff ()
fOldbOOIean(ff,ft) True — ft()

Note that foldboo}ea"(ff,ft) z = if z then f;() else f; ().

We call each f; in f an accumulating function. Note that if each f; = C;
then fold” (f) = id.

The following are some examples of computations that can be defined using
fold functions:

append(z, y) = fold™**(A().y, A(a, r) Cons(a,r)) z

map(z, f) = fold“**(A().Nil, A(a, r).Cons(f(a), 7)) x

sum(z) = fold"*'(X(). Zero /\ (a,r)a+7r)z

reverse () = fold“**(A().Nil, A(a, r).append(r, Cons(a, Nil))) =
z+y = fold"™(A().y, A(r). Succ(r)) z

Xy = fold"*(A\().Zero, A(r).y +7) x

even(z) = fold"*(A().True, A(r).not(r)) =

Ay = fold**”'*“" (\().False, A().y) &

if # then yelse 2 = fold??**™(X().z, A().y) =

flat(z) fold* ¢ (A(d). Cons (¢, Nil), A(l, r).append(l, 7))

p.address foldperson()\(n s,a). a) p

The general law which applies to all fold functions is called the promotion
theorem. We will use this theorem as a major component of our automated
transformation algorithm, called the normalization algorithm. The promotion
theorem states that the composition of any function ¢ with some fold is another
fold whose accumulating functions are related to the accumulating functions of
the original fold by fixed equations. The normalization algorithm will describe
how these new accumulating functions can be calculated. The promotion the-
orem for folds has appeared in the literature using various notations [11, 12]:

Theorem 1 (The Fold Promotion Theorem)
Vi: ¢ioEX(g) = gofi = gofold' (F) = fold” ()

Proof: Let n = gofoldT(T) and C; a constructor of T'. Then noC; = gofoldT(T)o

Ci = go f; o ET (fold” (F)) = ¢i 0 E¥ (9) o E¥ (fold” (F)) = ¢; o ET (g o fold” (F))

= ¢; o EX (). Therefore, no C; = ¢; o EX (1), which shows that 7 has a form of

a fold with accumulating functions ¢ (by Definition 2). Thus n = foldT(E). O
For example, the fold promotion theorem for list is:

on () 9(/n())
bc(a, g(r)) g(fela, 7))

g(fold™*!(fn. f) 2) = fold"*!(¢n. o) x




For example, the boolean promotion theorem is:

g o fOldbOOlean(ff7ft) — foldboolean (g o ffg o ft)

The normalization algorithm which is based on the promotion theorems is
described in detail in Section 3.2. Here we give an example of using the list pro-
motion theorem for normalizing programs. We will improve filter(filter(z, p), ).
where filter(z, p) returns the list of all elements in the list  that satisfy the
predicate p:

filter(x,p) = fold"“**(A().Nil, A(a, r).if p(a) then Cons(a, r) elser) z

We need to find some fold””(qbn, Ge)x = ﬁlter(ﬁlter(fr,p), q). We apply the list
promotion theorem with g(z) = filter(z, ¢) and fold"**(£,. fe)x = filter(x, p):

1) ¢,() = g(f2()) = filter(f,().q) = filter(Nil,q) = Nil

2) dula,filter(r,q) = g(fu(a.r) = flter(f.(a.).q)
filter(if p(a) then Cons(a, r) elser, q)
if p(a) thenfilter(Cons(a, r), ¢) else filter(r, q)
by the boolean promotion theorem
if p(a) then (if ¢(a) then Cons(a, filter(r, ¢)) else filter(r, ¢))
else filter(r, ¢)
by the filter definition
= ¢.(a,u) = if p(a) then (if ¢(a) then Cons(a, u) elseu) elseu
where filter(r, q) was generalized to u

Therefore, the composition filter(filter(z, p), ¢) is:
fold“**(A().Nil, Ma, u).if p(a) then (if ¢(a) then Cons(a, u) else u) else u) x

which is equal to filter(z, A(a).p(a) A q(a)).
The following corollary says that there is a unique way of expressing a
function as a fold [12]. It is used for testing the functional equality of two folds:

Corollary 1 (Uniqueness Property)

Vi: goCi=¢;0El(g) < g="fold ()

3 Normalization of Expressions with Folds

The normalization algorithm presented in this section is a reduction algorithm
that improves any program which is expressed only in terms of folds. This
algorithm reduces any fold applied to another fold into a fold applied to a
variable. Since every fold builds a data structure, improved programs will
build fewer intermediate data structures.

Program normalization is accomplished by pushing the outer fold into the
accumulating functions of the inner fold, as is directed by the promotion the-
orem. This is a generalization of loop fusion to arbitrary types because the
outer fold will be pushed inside the inner one until it is eliminated by the
generalizations introduced by the normalization algorithm.



3.1 The Term Language
In the following definitions we assume that programs are well-typed.

Definition 3 (The Term Language) A program in the term language has
the form Az, ...,xn).7, where each x; is « variable and 7 is a term. FEach

term has one of the following forms:
e variable: x, bound in some outer lambda abstraction;

e construction: C(7y,...,7,), where C is a constructor and each 7; is a
term;

o fold: foldT(fl,....fn)Tf where T is a term and each f; has the form

Az1,....2m).7i, where 7; is a term and each x; is a variable.

Definition 4 (Accumulative Result Variable) FEach accumulating function
fi in a fold in the term language has the form A(xy, ..., xm).T, where the types

of the bound variables x1.....x,, are associated with the typesty,.... tm in the

domain of the corresponding constructor C;. Fach bound variable x; whose
associated type t; is the recursive type I' is an accumulative result variable.

For example, in append(z,y) = foldlm()\().y, A(a,r).Cons(a,r)) x, variable r
is an accumulative result variable.

Definition 5 (Safe Program) A program in the term language is safe if it

does not contain terms foldT(f)t; where t contains a reference to an accumu-
lative result variable which is bound in an outer lambda abstraction.

This basically says that the partial results of iterations (i.e. the values of the
accumulative result variables) are black boxes (they cannot be traversed).
For example, reverse(z), defined in Section 2, is computed by

fold**(A().Nil, A(a, r).fold***(A().Cons(a, Nil), A(b, s).Cons(b, s)) r) =

is not safe, since the inner fold (that computes append(r, Cons(a, Nil))) is over
r. an accumulative result variable.

Definition 6 (Canonical Terms) A canonical term is a term in which
e all folds in the term are over variables;

e none of these variables are accumulative result variables.

Note that a canonical term is a safe term that does not produce any intermedi-
ate results. We will show that if a program in our term language is safe then it
can be transformed into a canonical program by the normalization algorithm.

Even though the restriction that the intermediate results of recursion (i.e.
the values of accumulative result variables) are not allowed to be traversed
limits the expressiveness of safe programs, there are many useful programs that
are still expressible. In fact, in [2], a language that poses a similar restriction

was proved to capture all polynomial-time programs3.

2Qur language cannot be exactly PTIME since we have a decision algorithm for equalities
(see Section 5) and it is well-known that function equality is undecidable for this class.



3.2 The Normalization Algorithm

Before expressing the normalization algorithm in detail, we give one simple
example that illustrates how it works. We will improve length(append(z, y)),
where:

length(z) = fold””(/\()zefo: Ala, r).Suce(r))
append(z.y) = fold™(fu. fe)z  where { % - AA((c)z;yr')-Cons(a:r)

We need to find some fold"**(¢,,. ¢c) x equivalent to length(append(x,y)). We
apply the list promotion theorem with g = length:

én() length(f,()) = length(y)
éc(a,length(r)) length(f.(a,r))

length(Cons(a, r))

Succ(length(r)) by length definition
bc(a, u) = Succ(u)

where length(r) was generalized to u

o

Therefore, the composition length(append(z, y)) is:
fold“**(A().length(y), A(a, u).Suce(u))

Note that the intermediate list structure append(z, y) is no longer produced.

The normalization algorithm is a meaning preserving transformation from
a term to another term. It uses a parameter p which is a partial function from
terms to variables. In our notation, p[g/r] extends p with the mapping from g to
r. Function p keeps all bindings, such as length(r)/u in the previous example,
to be used for eliminating all calls to g from the premise of the promotion
theorem, that is, from ¢; o EZT(g) = g o f;, thus calculating an expression for
the accumulating function ¢;. This is called the generalization phase. This
generalization derives the fixpoint of the composition given the fixpoints of the
components. We will prove that such a generalization is always possible for all
safe terms.

The normalization algorithm consists of the following parts:

o Generalization: If the normalization algorithm derives a term mapped in
p to some variable v, then this term is replaced by v.

e Application to a Construction: From the fold definition:
fold" (F)(Ci(@)) = fi(£] (fold” (F))(n))
For example, for length = fold"**(\().Zero, A(a, r).Succ(r)):
length(Cons(a,l)) = Succ(length(!))

e Fold Promotion: If the term is a composition g(foldT(f) z), where g is
a fold, then the fold promotion theorem is applied to derive the term

10



foldT(E) z, where, for all ¢, ¢; is computed by recursively improving the
equation:

Gi(r1, .. rm,) = g(fi(zr, ..., 2m,))

where all z; and 7; are new variables. In each case, p is extended with
the mappings from terms in (E;(g)(21, ..., &m,)) to variables rq, ..., rpy,.

For example, from the fold promotion theorem for lists we have:

g(fold™*!(f,. f.)x) = fold"*! (¢, ) x
where

én()
¢c(7’1, 7“2)

g(fe(z1,@2)) with plz1/r1, g(z2)/72]

For example, the following improves plus(length(z), length(y)), where
plus(z,y) = fold"**(A().y, A(r).Suce(r)) =

Let plus(length(z), length(y)) = fold””(qbn,qbc)x. We apply the promotion
theorem for list with

9(2)

plus(length(y), 2)
= fold™**(X().fold"**(A().Zero, M(a, ).Succ(r)) y,
_ A(r).Suce(r)) 2
fold™**(fn. fo)z = length(z)
= fold“**(A\().Zero, A(a, 7).Succ(r)) z

to compose g(length(z)) = foldlm(qﬁn,qﬁc) x:

= g(Zero)
= fold“**(A().Zero, A(a, ).Succ(r)) y
be(rir) = glfelarza))  (wherep = [21/r1, g(w2)/r2])
= g(Succ(z2)) o
= Succ(g(z2)) (application of g to a constructor)
= Suce(r) (9(z2) was generalized to r5)

Therefore, plus(length(z), length(y)) is:

fold"**(A().fold"**(A().Zero, A(a, r).Succ(r)) v,
A(r1.7r9).Suce(rg)) @

which is equal to length(append(z,y)) (presented in the beginning of this sub-
section).

Theorem 2 (Correctness of the Normalization Algorithm) The normal-
wzation algorithm transforms any safe term into a canonical form.

11



Proof: We can see from the definitions of the term language and canonical
forms that folds of the form g(¢) = foldT(T)t need to be rewritten into folds over
variables. If ¢ is a construction, then we apply the application-to-a-construction
rule. In that case the fold ¢ is pushed inside to only those components of the
construction that have recursive type. If ¢ is a fold, then ¢ is pushed into the
accumulators of the inner fold, as is directed by the fold promotion theorem,
and some new mappings are attached to p. After recursively applying the
normalization algorithm only terms of the form g(z), where # is a variable,
remain. If # is an accumulative result variable, then, from the way p was
extended during promotion, g(z) is always bound in p to some new variable r.
This is the generalization phase of the algorithm. If z is not an accumulative
result variable, then g(z) remains as is. Therefore, all folds in the resulting
term are over non-accumulative result variables. It is necessary to prove that
after fold promotion there remain no references of the old accumulative result
variables other than those generalized by p. This is true only when ¢ is a safe
fold, that is, when the term ¢ does not contain accumulative result variables.
O

Note that the composition of two or more canonical terms is a safe term
and, therefore, it can be reduced to canonical form. This makes our canonical
term language closed under composition.

The normalization algorithm can be implemented very efficiently. Whenever
we apply the promotion theorem we annotate each function g (the left part of
the application) with a new number. Then, instead of inserting g(x;)/r; in p,
for some variables x; and r;, we can insert the triple of this number with z;
and r;. Then the generalization phase is performed by checking if the current
term f(z) was annotated by a number already in p. That way, the complexity
of the normalization algorithm is O(n logn), where n is the size of the resulting
canonical term (since a list of numbers can be searched in O(logn)). The size
of the resulting term, though, can be exponential to the size of the initial term,
such as in the case a fold is applied to a deeply nested construction®. This is a
problem that all partial evaluators face.

The normalization algorithm can capture most stream-based pipelining tech-
niques found in relational query optimization. These techniques model database
operations as threads that propagate tuples or partitions of tuples to each other,
instead of materializing intermediate relations. This can be achieved in our
framework by fusing the loops of the nested relational operators into one loop
using the normalization algorithm. Our method, though, is algebraic, fully au-
tomated, and it can be performed at any level and for any data structure. Note
that the cases that we are forced to materialize results during pipelining, are
the cases that require some special operators, such as the sort operator before
a sort-merge join. These operations reflect the non-improvable terms in our
algebra. Our work states this condition explicitly as a syntactic restrictions to
program schemes.

4This does not contradict with the fact that the resulting programs are always more
efficient than the initial, since folds are lazily evaluated, that is, only one accumulator function
is evaluated each time.
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4 Finite Sets

Finite sets cannot be captured as regular sums-of-products types since they
must satisfy some special properties, such as, being independent of the order
in which elements are inserted. All the type constructors described so far form
free algebras, in which there is a unique way of constructing an instance of a
type. Sets are very important abstractions in database specification as they
offer high degree of data independence. They are also important in database
implementation because operations on sets have more alternative translations
than the operations on free algebra types, therefore they offer more opportu-
nities for optimization, yielding more efficient programs. In spite of that, sets
must not be considered as data structures suitable for all cases, as systems
based on the relational model do. If there is some additional information on a
collection, such as an order of some kind, then an ordered data structure may
be more suitable than sets. Furthermore, if there is some dependency between
two sets, then a hierarchical structure, such as sets of sets, may be more natural
for expressing programs over these structures. The latter case does not imply
that these structures can not be actually implemented as flat tables. As we
will see in Section 7, abstract modeling can be effectively separated from im-
plementation details. Therefore, the abstract specification of a program should
capture as much as possible the semantic information of the problem domain
and ignore implementation issues. The program optimizer must be able to use
this semantic information to make intelligent decisions.

Finite sets are expressed as instances of a special built-in type set(a).
The set type has two constructors: Emptyset that returns an empty set and
Insert(e, s) that constructs a new set by inserting the element e into the set s.
(The type of Insert is a x set(a) — set(a).) Note that Insert(a, Insert(b, s)) =
Insert(b, Insert(a, s)) and that if e is already in s then Insert(e,s) = s. The
selector function split(s) is a non-deterministic function that splits the non-
empty input set s into an element and a set. It returns a pair that contains an
arbitrary element of s and the set equal to s with this chosen element removed.
That is, if (a,r) = split(s) then a € r and {a} Ur = s.

A function suitable for traversing sets is set fold (similar to list fold):

Definition 7 (Set Fold) The set fold fold***(f.. f,) is defined by the following

recursive equation:

fld"™(f.. f,) s

if s = Emptyset then f.()
else let (a,r) = split(s) in f;(a, fold***(f., fs) r)

For example,

emptyp(z) = fold***(A().True, A(a, r).False)
union(z, y) = fold***(A().y, Ma, r).Insert(a, 7))
member(e, 2) = fold***(A().False, A(a,r).(a = ¢)orr) x
restrict(s, f) = fold***(A().Emptyset,
Ala, r).if f(a) thenInsert(a,r)elser) s

Set equality of two sets z and y is computed by the following:

fold*“*(A().fold*“*(A(). True,
set_equal(z,y) = A(b, s).member(b, z) and s) y,
Ala, r).member(a, y)and r) z
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Another example is the generic join join(z, y, match, concat) (it is generic enough
to have selection and projection embedded in its input functions):

fold*“*(A(). Emptyset
Ma, r)fold*“*(A().r, A(b, s).if match(a, b)
then Insert(concat(a,b), s)
else s) y)

join(z, y, match, concat) takes every combination of elements @ and b from the
sets x and y, checks whether these elements satisfy the match predicate, and
if so it returns a new element by applying the concat function to form a new
element of the result set. An example call to this join retrieves all employees
working in the CSE department (this is a semijoin):

join(employees, departments,
A(emp,dept).(emp.dno=dept.dno and dept.name=“CSE”),
A(emp,dept).emp)

A sufficient condition for a set fold being order-independent is f; being both
commutative and idempotent [3]:

Definition 8 (Commutative-idempotent function)
A function f s commutative-idempotent if:

YmV¥nVs: f(m, f(n,s))
YnVs: f(n, f(n.s))
For example, Insert is commutative-idempotent, while Cons is not.

The commutativity and the idempotence property of a function f can be
verified by the equality decision algorithm described in Section 5.

f(n, f(m,s)) (commutativity)
f(n,s) (idempotence)

Theorem 3 If a function f; is commutative-idempotent then

fold*“*(f., f) (Insert (a, s)) = fi(a,fold***(f., f:) s)

Proof: If s = Emptyset then fold**(f., f,) (Insert(a, Emptyset)) = fs(a, f.)
which is true (because split(Insert(a, Emptyset)) = (a, Emptyset)). If a €
s then Insert(a,s) = s and fs(a,fold”t(fe,fs)s) = fold“t(fe,fs)s (idem-
potence property). Otherwise, let (b,r) = split(Insert(a,s)). We assume
that the theorem is true for m = s — {a,b}: fold*“'(f., f;) (Insert (e, m)) =
fs(e, fold*“*(f., f) m). Then fold***(f., f) (Insert(a, s)) = fs(b, fold***(f., fs) )
= fo(b,fold**(f., fs) Insert(a, m)) = f(b, fs(a,fold**(f., f;) m)) (hypothesis)

= fi(a, fo(b,fold**(f., f;) m)) (commutativity property) = f,(a, fold*“*(f.. f,) s)
(hypothesis). O

Theorem 4 (The Promotion Theorem for Set Folds)

60 o(£.0)
6ula.o(r) = (J.(a.7)
)

g(fold**'(f., f.)2) = fold**'(dc.6,)

and if fs is commutative-idempotent then so is ¢;.
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Proof: For # = Emptyset the theorem is true, since ¢.() = g(fe()). Otherwise,
let (a,r) = split(z). We assume that the theorem is true for # = r. Then we
have g(fold**(f.. fs) ) = g(fs(a.fold"(f.. fs) 7)) = ds(a, g(fold’*(f.. f;) 7))
= ¢4(a,fold* (@, ¢5) r) = fold**(¢., ds)x.  In addition, ¢,(a, ds(b, g(r))) =
és(a, g(fs(b, 7)) = g(fs(a, fs(b,7))). Let f; be a commutative-idempotent
function. Then ¢,(a. ¢s(a, g(?”))) =g(fs(a, fs(a, ’l”))) =g(fs(a, 7’)) = ¢s(a, g(r))
and ¢,(a, ¢s(b. g(T’))) = g(fs(a, fs(b, T’))) = g(fs(b, fs(a, T’))) = ¢s(b, ¢5(a, g(r)))
Therefore. ¢, is commutative-idempotent too. O

The normalization algorithm does not need any extensions to handle set
folds, since the application-to-a-construction rule can be used as is for sets and
the fold promotion theorem for sets is exactly like any fold promotion theorem
in the free algebra. The condition f; being an commutative-idempotent can
be seen as an additional condition for a set fold being safe. The normalization
algorithm can now improve any safe program that involves sets, lists, trees,
tuples, integers, booleans etc.

The normalization algorithm captures many types of algebraic transforma-
tions already in use in relational algebra. For example, the following query:

restrict(join(employees, departments,
A(emp,dept).(emp.dno=dept.dno),
A(emp,dept).(emp,dept)),
A(emp,dept).dept.name=“CSE”)

is reduced by the normalization algorithm into a canonical form which is equiv-
alent to:

join(employees, departments,
A(emp,dept).(emp.dno=dept.dno and dept.name=“CSE”),
A(emp.dept).(emp,dept))

that is, the selection was pushed inside the join. Note that, if you have a
good index to evaluate the join and if the result of the join is very small, it
might be preferable not to push the selection inside the join. But there is some
information missing in the above query. Our normalization algorithm always
improves programs if these programs are evaluated as folds directly. That is,
when select and join in our example are evaluated naively as loops. We will
see in Section 7 that normalization should happen after type transformation.
If there is an index available in the physical representation of the join inputs
then this information will appear as part of the transformed query. That way
path selection can be integrated neatly with algebraic optimization.
As another example, consider the following nested SQL query:

select * from d departments
where d.name=“CSE”
and exists( select * from e employees
where e.dno=d.dno and e.age>65 )

This query can be computed by the following safe program:

restrict(departments,
A(d).d.name=“CSE”
and (not emptyp(restrict(employees,
A(e).e.dno=d.dno and e.age>65))))
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which is normalized into the following canonical form:

fold*“*(A(). Emptyset,
A(d, r).if d.name = “CSE”
then fold*“*(A().r,
A(e, s).if e.dno = d.dno
thenif e.age > 65 thenInsert(e, s) else s
elses)
employees
elser)
departments

5 Testing Functional Equalities

The following algorithm tests whether any two canonical terms compute the
same function. It is based on the uniqueness property that says that there is a
unique way for expressing a function as a fold. Given any two canonical pro-
grams AZ.t1(Z) and AY.¢2(7) in our term language (i.e. ¢; and ¢y are canonical
terms), £(¢1(T),t2(T)) returns true if and only if ¢1(Z) = t2(T) for any input Z.
E(z,y) is computed by the following rules:

1 E(z, x) — true

2 E(z,y) — false ife#y

4 E(Cr(u), Cpy(w)) — false ifk#m

5  E(fold (f)z fold (7)z) — A, & fz ‘) 9:(7))

6 E(g(z).fold" (f)z) — N\ E(9(Ci(). fi( ET(g)y))
7 E(fold’ (F)z. g(z)) — N &( fz E?( )9). 9(Ci(7)))

where ¥ in Rules 5, 6, and 7 are new variable names. All rules are evaluated
in sequence and only the first applicable rule is used. The last two rules come
from the uniqueness property. They require that both terms ¢(C;(y)) and
fi(EL(g)y) are improved before they are passed to the equality checker &.
This implies that this algorithm can decide functional equalities only for safe
terms. Rule 5 is used as the bottom case for Rules 6 and 7.

For example, E(plus(y, ), plus(z,y)) = S(foldnat()\().x, A(r).Suce(r))y,
fold™**(A().y, A(r).Suce(r))z). We apply the uniqueness property for g(z) =
fold™ **(A().z, A(r).Suce(r)) y:

z = Zero : E(g(Zero),y) = E(fold™**(X().Zero, A(r).Suce(r))y, y)
= true
x = Suce(?) : E(g(Succ(d)), Suce(g(2)))
(1),

= &(fold"**(A(). Succ A(r).Suce(r))y, Succ(g(i)))

we apply the uniqueness property again with f(y) = Suce(g(%)):
y = Zero : E(f(Zero), Succ()) E(Su
(4.1

(_) Suce(7))

true

E(Suce(f(j)). Suce(f(4)))
E(f(7). f(7)) = true

y
y=Succ(j) s E(f(Suce(i). Succ(f(})))

I ||vo
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Therefore, £(plus(y, ), plus(z, y)) is true.

Set equality is different than structural equality for sums-of-products types.
Testing whether two expressions e; and ey of type set are equal is equivalent
to testing whether set_equal(eq, €2) is equal to the term True.

Each canonical form specifies an equivalence class of safe programs that are
reduced to this form by the normalization algorithm. In fact, there may be
infinite number of such programs in a class. For example, z + y, 2 + (y + 0),
z+ (y+040) etc. compute the same function and they are all reduced to the
same canonical form z+y. The equivalence class of all canonical programs that
compute the same function f is called the canonical extension of f. From the
uniqueness property and by using case analysis we can prove that for any func-
tion f that can be expressed as a canonical program, the canonical extension
is finite. The optimization of function f is a search over the finite space of the
canonical extension of f. This process will be explained in detail in Section 8.

6 Program Synthesis

The program synthesis algorithm described in this section is a pattern matching
algorithm. It is based on the equality tester for canonical programs, as it is
described in Section 5. We use here the term program synthesis in its wider
context of constructing programs, not in its usual narrow form of producing
programs given the input/output specification of the programs.

A canonical patiern is a canonical program in which some of its variables are
annotated as pattern variables. A pattern variable with name z is represented
as #z, in order to be distinguished from regular term variables. For example,

Cons(#x, fold(A().Nil, A(a, r).#y) z)

is a canonical pattern with pattern variables #x and #y.

A substitution list p is either fail or a partial binding from pattern variables
to canonical programs. We denote p[z/g] the extension of p with the binding
from the pattern variable #x to the canonical program g, p[z] is the value of
#x in p, and p(f) is a canonical pattern that results after replacing all pattern
variables in f that occur in p by their bindings. A canonical pattern f is equal
to a canonical program g under the substitution p if p(f) does not contain any
pattern variables and £(p(f), g) = true.

A canonical pattern f matches a canonical program g under a substitution p,
denoted as [f = g] p, if there is a substitution p’ such that £(p'(p(f)), ¢) = true.
The algorithm in Figure 1 implements [f = ¢] p. Rules 2 through 8 are very
similar to the rules for £(f, g). as they are described in Section 5. The only
difference is that instead of collecting all test results using the and operator,
we accumulate all substitution lists, starting with p, as it is dictated by the A4;
accumulation function:

Ai( fi)p = falfa-a(o. f2(f1(p))))
For example, A;( [u; = w;] ) p in Rule 4 is:

[un = wa] ([un—1 = wn-1] .. . ([ur = wo] ([ = w1] p)))

Rules 9 through 12 involve pattern variables. Rule 9 is straightforward. Rule 10
is similar to Rule 6. It serves as a bottom case for Rules 11 and 12. If Rule 10
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[e = u]fail — fail 1
[z=z]p — p 2
[z =y]p — fail ifz#y 3
[Cx(@) = C(@)] 5 e A([w=wl) s
[Ck(7) = Crm(w)] p — fail ifk#m 5
[fold” (F)z = fold” (§)a] ) — A [/:(5) = ()] ) p 6
[9(z) = fold” (f) 2] —  A([9(Ci(z) = fi(El (9)F)] ) p 7
[fold” (f) z = g(z)] — A [fi(El (9)7) = 9(Ci(z))] ) p 8
[4f=g]p ~ — plf/g] 9
[fold? (7) #£ = fold? ()] p — [fold” (7) & = fold” (3) a] (oL /] 10
[fold®(g) #f = fold" (¢)z]p — p'[f/fold" (Az1.p 1], Az fa]) 2] 11

where p' = A;( [fold®(g) #f; =
¢:(E? (fold” (7)) Z)] ) p
[fold*(7) #f = ¢]p — PUf/Ck(P' AL - 0'[fn])] 12

where Ck is any Constructor of S and

P’ = [gn(EZ (fold*(9)) (#f1. . #n)) = 6 p
Figure 1: The Program Synthesis Algorithm

is invoked then neither of Rules 11 or 12 can be invoked. Rule 11 comes from
the promotion theorem with g = fold(g). Rule 12 tests every constructor Cy of
type S to see if it gives an acceptable solution for #f. Rules 11 and 12 may
overlap. This may result to more than one solution to a pattern matching.
All these rules can be used as rewrite rules in a rule-base system. The search
engine of this rule-base system should test each alternative until it finds one
that does not fail. This search can be guided by cost functions and heuristics
for synthesising the best solutions. Rule 12 may lead into an infinite recursion
as in the following example:

[fold"**(A().Nil, A(a, r).Cons(a, r)) #f = ]

This has the solution f = Cons(#f1,Cons(#/f2,...)) (infinite times). Fortu-
nately, the search engine can detect such infinite loops by keeping each triple

(folds(ﬁ), ¢, Ct) in Rule 12 in a stack and abort Rule 12 if it is invoked twice
for the same triple.
For example, suppose that we want to synthesize f in

[length(#f) = plus(length(z), length(y))]

where length(z) = foldl”t()\() Zero, A(a,r).Suce(r)) z. After normalizing the
right part of the previous equation we get

[length(#f) = foldnat()\().length(y), A(r).Suce(r)) z]

We will try first f = fold””()\().#fl, (a,r).#f2) x (from Rule 11). Then we

get the following two equations:

[length(# f1) = length(y)] and [length(# f2) = Succ(length(r))]
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The first equation gives fi = y (from Rule 11). To solve the second equation
we try first fo = Nil (from Rule 12) which fails. Then we try fo = Cons(fs, fa)
that gives:

[Succ(length(# f4)) = Succ(length(r))]
After using Rules 4 and 10 we get f4 = r. Therefore,

f= fold””(/\().y, Aa,r).Cons(#fs, 7))z

Variable f3 was not bound to any term since it was eliminated during normal-
ization. This means that it is universally quantified and can be bound to any
canonical term. If f3 = a then f is list append.

7 Mapping Logical to Physical Operations

One of the goals of this work is to achieve a high degree of data independence,
that is, a separation between the abstract model and the implementation de-
tails. That way the model designer does not have to worry about program
efficiency and space utilization, but only to be concerned with expressing cor-
rect specification. In addition, this separation may offer more opportunities for
optimization. One effective mechanism for separating the model from imple-
mentation is type transformation [9]. In this framework each abstract data type
in the abstract program is mapped into a storage structure by an abstraction
function.

Definition 9 (Abstraction Function) Let T be an abstract type and S the
type of a concrete storage structure. An abstraction function is a unary function
RL of type S — T expressed in canonical form.

For example, if T' = set and S = list then one possible RifY, is:

RifL = fold"*'(A().Emptyset, M(a, r).Insert(a, 7))

The abstraction function is in general a many-to-one function, that is, an ab-
stract type may be mapped into many different storage structures. For exam-
ple, a set can be mapped into a list of any order. Having the optimizer select
the order is an additional source for optimization. Functions Rg can be pro-
vided in a form of an extensible system library. A mapping from an abstract
type T to a concrete type S may have more than one abstraction functions
RL. The database implementor is responsible for selecting the right storage
structures to map the abstract types as well as the abstraction functions that
specify this mapping. This implementation phase is performed after the speci-
fication phase. The optimizer will use this information to derive a translation
that satisfies both the abstract specification and the mapping transformations.
This is achieved by the following theory (derived from the type transformation
diagram that commutes):

Definition 10 (Function Implementation) Let f be an abstract function
of type Ty x -+ - x T, — Ty and for 0 <1 < n, r; is an abstraction function Rgz
Then a function F of type S1 x -+ x S, — Sy is an implementation of f iff:

rooF = fo(ry X - xry)

19



For example, let sets be mapped into lists by the function R3f, described above.

Then UNION (of type list x list — list) is the implementation of union (of
type set x set — set) iff:

Rifl o UNION = uniono (R{f, x RiS)
that is, for all z and y:

Rift(UNION(z, y)) = union(Ry;(2). Rifi(y))

For example, one solution for UNION that satisfies this equation is list append.
Note that append maintains all duplicated elements while union does not. This
is consistent with our type transformation since the result of append will be
mapped by R;f, into a set. If we want the output of UNION to reflect the
output of union then we better use an isomorphic mapping for the output type
of union.

The homomorphic equation 70 F' = fo(ry x -+ x 1) can be solved in
two ways. We can select a detailed implementation of the output type 7y of f
by specifying the inverse abstraction function 7'0_1 from Tj to Sy. Then

F = rytofo(ryx - xr)

This implies that the mapping from 7y to Sy is specified as an isomorphism.
This solution could miss some valid optimizations, especially in the case of
sets. A more general solution is to use the program synthesis algorithm as it
is described in Section 6. In that case, F' is derived by the following pattern
matching:

[ro(#F) = f(ri(z1). - ral(2n)] p

Note that in both cases F' is expressed in terms of concrete primitives only when
it is normalized, such as UNION is expressed in list primitives exclusively. This
can be proved by induction®: if F' is a variable then the statement is true; if
it is a construction C(¢1,...,t,) then none of the parameters of C returns an
abstract object since C is a constructor of a concrete type which by definition
does not refer to any abstract type; if it is a fold foldT(?)a: that returns a
concrete type then all f; return concrete types.

The type transformation model can also be used for translating virtual view
updates. Each such view can be captured as a many-to-one function v from
the abstract database type T to the view type S. Suppose that we perform an
update u over this view, that is, u is a function from S to S. The view update
problem is to find a database update U that transforms the database state in
such a way that the view of the new database state is identical to the original
view after the application of u. That is voU = wowv. As before, the solution
for U can be derived from [v(#U) = u(v(db))].

Another application of type transformation is database restructuring after
schema and/or implementation evolution. Schema evolution from a database
type T to a database type T can be captured as a function ¢ of type TV — T.
If the abstraction function that implements the abstract database type T as
the storage structure S was r, then this function should change to r’ (of type
S’ — T") to reflect the schema changes. The function R that restructures

5We assume that there are no types in common between the abstract and concrete types.
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the database state satisfies the equation cor’ o R = r, which can also be
solved by using the synthesis algorithm. Note that the resulting solution for
R may have uninstantiated variables. This indicates that there are values in
the new database state that need to be filled, such as, in the case of a tuple
extended with new components. Schema evolution can be performed in small
parts by specifying how some components of the database type change. The
compiler should be able to accumulate these pieces of information and use them
to synthesize the functions ¢ and 7’ from r. A convenient tool for performing
this task is compile-time reflection [7].

8 Decomposition into Concrete Primitives

Suppose that a query is normalized into the following canonical form:
fold"** (A().fold"**(A().Zero, A(a, r).Suce(r)) y, AMa, r).Suce(r)) 2

and there are the following abstractions in the physical layer:

append(z,y) = fold“:”()\().y, A(a,r).Cons(a,r))
length(z) = fold"**(A().Zero, A(a, r).Suce(r)) &
plus(z, y) = fold"™(A().y, A(r).Suce(r)) z

then this canonical form can be expressed either as length(append(z,y)) or as
plus(length(z), length(y)). If the cost of plus is 1, the cost of length is the size
of its input, and the cost of append is the size of its first input, then clearly
the latter choice is better than the first. The following analysis automates this
process of mapping canonical forms into compositions of concrete primitives.

Definition 11 (Concrete Layer) The concrete layer consists of a set CL of
quadruples (name, behavior, implementation, cost) where name is the name
of a concrete abstraction, behavior is the canonical program that specifies the
behavior of this abstraction, tmplementation is the actual implementation of
this abstraction in a possibly non-applicative reference-based language, and cost
s the cost function that manipulates a user-defined cost data structure.

The cost data structure is typically a tuple that contains the necessary com-
ponents for computing cost values. Cost values satisfy a user-supplied partial
order. Each component of a quadruple p from CL, such as name, can be accessed
as p[name].

The following algorithm, called the fold optimization algorithm, transforms
a canonical form f into a composition of concrete primitives. It is invoked
as G fp. It returns the set of all possible compositions of concrete names
from CL whose resulting canonical form is equal to f. This algorithm uses set
comprehensions to derive all permutations.

1 G ffail = 0
2 Gup = {v} (if v is a variable)
4 Gfp = {a[name|(¢1,...,¢n)/a — CL,

Vi g —G(p'[fi]) P}
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Rules 1 and 2 are straightforward. Rule 3 says that if f is a construction
C(f1,..., fn) then we return C(¢1,...,¢,), where each ¢; is derived by call-
ing this algorithm recursively for each component f;. The last rule uses the
synthesis algorithm to transform f into a call to the concrete operation a.
The parameters ¢; of this call can be derived by using the program synthesis
algorithm and can be transformed by using the fold optimization algorithm
recursively. Rule 4 is evaluated when f is either a construction or a fold. The
efficiency of this algorithm can be improved in many ways. First, this algorithm
can be implemented as a search-based algorithm guided by a[cost]. The cost of
a variable is derived from statistical information while the cost of a single con-
struction is ‘unit’, which is a user-supplied constant. (A complete framework
for specifying database statistics and for assigning costs to all variables in a
canonical program is proposed in [7].) Estimating costs for canonical programs
is easier than for non-canonical programs, since the former do not materialize
intermediate results and, therefore, they do not require selectivity estimations.
Second, we do not need to check all concrete abstractions a in CL, since we can
use type information to discriminate them.

9 Specifying Semantic Information as Type
Restrictions

Each type is associated with a set of values, the instances of the type, that
share common properties, such as common operations. We can restrict the set
of instances of a type T further by using the where type constructor:

T = T where(z) p(z)
This defines a new type 7" whose instances are all the instances z of type 7" that

satisfy the predicate p(x), where p is a canonical term of type T' — boolean.
The following are examples of restrictions:

rangel = nat where(z) z > 10and 2 < 20
nset(a) = set(a) where(z) z # Emptyset
slist(a) = Msl(info : list(a), size : nat) where(z) z.size = length(z.info)

The last example keeps the length of a list as redundant information attached
to the list. Redundant information is very important to optimization as it offers
alternative methods of execution to choose from that may have different costs.
For example, it is cheaper to access z.size from the slist « to derive the length
of z than it is to compute length(x.info).

In addition to type parameters, type definitions can be parameterized by
values that are used in the where clauses of these type definitions. This is called
a parameterized restriction:

T'zy:t1,...,2n:ty] = T where(z) p(z,21,...,2)

This defines a new type 7" whose instances are all instances x of the type T that
satisfy the predicate p(x,#1,...,#,). That is, this restriction is parameterized

22



and it is instantiated whenever the parameters x; are instantiated to values
during compile time. For example:

bounded(a)[low : a, high : a, f : (o, @) — boolean]
= a where(z) f(low, z) and f(z, high)

range[low : nat, high : nat] = bounded(nat)[low, high, <]
rangel = range[10, 20]
ordered_list(a)[f : (a,a) — boolean] = list(a) where(z) ordered(z, f)
Keyed_set(a. ) - (a) — F]

= set(a) where(z) card(z) = card(image(f) z)
persons = keyed_set(person, nat)[Ap.(p.ssn)]

where ordered(z, f) is true if list # is ordered by the function f, card is set
cardinality, and image(f) = fold*“*(A().Emptyset, A(a, r).Insert(f(a), r)).
Instances of a restricted type should obey all restrictions propagated to this
type. The following algorithm derives the predicate Z{T'} which all instances of
a type T need to satisfy, by accumulating all restrictions from all types referred

by T

Definition 12 (Accumulated Restriction) Fach type T is associated with
an accumulated restriction T{T} defined by the following inductive equations:

I{T(t1.....ty)} = = fold'(....AZ.A\Z...)

(map? (Z{t1},....,Z{t,}) 2)
I{T where(z) f(z)}x = ZI{T}zandf(z) '
I{T}x = true (otherwise)

that is, each value x of type T must satisfy T{T}x.

Here map? maps any parametric type T(ay,...,ay) into (B, ..., 3,), thus
it requires n functions, one for each type variable. In the first equation, fold”
accumulates all results from map? using the A (and) operator.

For example, for the type T' defined as:
T = list(range[0, 5]) where(z) length(z) < 10
I{T} x is:
fold””()\().true, Aa,r).0<aanda < 5andr)z and length(z) < 10

Type checking in the presence of type restrictions requires theorem proving
capabilities. For example, f(g(z)), where f: T — a and g : § — T", is type
correct if type T is compatible (unifiable) with 7" when all type restrictions
are removed, and if Z{T"} y = Z{T'} y is true. This property is very useful for
discriminating incompatible compositions of abstractions during decomposition
into concrete primitives (Section 8). For example, the type signatures for sort
and merge are:

fun sort (z : list(a), f: @ x @ — boolean ) — ordered_list(a)[f]

fun merge (z : ordered_list(a)[f], y : ordered_list(a)[f], f : a x a — boolean)
— ordered_list(a)[f]
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For example, merge(sort(xz, f),sort(y, f), f) is type correct while merge(z, y. f)
is not, where x and y are unordered lists.

Type restrictions must be used during type transformation to derive con-
sistent implementations. Furthermore, they may yield additional alternatives
for function implementations, such as in the case of redundancy constraints.
That way, path selection can be performed during algebraic optimization, since
alternative paths are specified by redundancy constraints attached to storage
structures.

For example, suppose that a set(person) is mapped into

T = pair(ordered_list(person)[A(z, y).z.ssn < y.ssn],
ordered_list(person)[A(z, y).z.name < y.name])
where(z) R, (z fst) = Rif (2.snd)

using the abstraction function r = Az.Rjf,(z.fst). That is, a set of persons
is mapped into two lists (that represent indices): one ordered by the ssn of
persons and the other by the name of persons. Accessing a person can be
achieved by accessing either of these two access paths. The optimizer should
be able to select the access with the lowest cost.

Each abstract type 7; is mapped into a concrete type S; by an abstraction
function r; = Rg: All type restrictions involving either 7; or S; must be used
when deriving a function implementation F' of f:

/\(I{SZ}CL‘Z and Z{T;}ri(x;)) = ro(F(21.....2,)) = f(ri(21)....."n(20n))

(3

where (z = y) = fold"*?'*®" (A().True, A().y) z.

Type restrictions can be used to control program synthesis (Section 6). In
particular, redundancy constraints, such as the one in the slist example, can
expand the search space of the program synthesizer. Suppose that we want to

synthesize f such that [g(#f) = ¢(z1,...,2,)]p # fail. Each variable z; of

type T; must obey the Z{T;} predicate:

The solution for f can be derived from the following:

[9(#F) = ¢(Af Z{T }2, thenz; elseO, ... if 7{T, }z, thenz, elseO)] p
This indicates that if 2; does not satisfy Z{T; }; then the ith parameter of ¢ is
set to O (a distinct canonical term). The program synthesiser must be extended
to include the rule [f = O] p = fail, that is, pattern matching fails if one of
the integrity constraints is not satisfied. When O is composed with a canonical
term f during program improvement, the result is O, ie. Oo f = fo O = 0O.
Therefore, the right part of the equation for g(#f) can be normalized to a
canonical form that can be used by the program synthesizer to derive a solution
for f.
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10 Conclusion

We have presented a new query algebra based on a small number of primitives
that facilitates query optimization. This algebra is expressive enough to capture
a wide range of database operations over an extensible number of bulk data
structures. Its simplicity and uniformity make it a perfect target for a rich
functional database programming language.

Algebraic optimization can only be effective if it is combined with informa-
tion about physical implementation, such as available access paths and algo-
rithms. Our framework integrates implementation specifications with algebraic
optimization in such a way that program normalization always improves ef-
ficiency independently of the database state. Cost estimates and database
statistics can be used by the optimizer in a later phase to search the space
of equivalent normalized physical programs, which are derived from the initial
query after type transformation and normalization. Our optimizer is an extensi-
ble, general-purpose, optimizer that does not make a-priori assumptions about
the underlying physical structures and algorithms. It would be interesting to
compare the performance of such a powerful system with a special-purpose opti-
mizer, such as the one for Ingres SQL. Special-purpose optimizers contain many
shortcuts, especially when it comes to storage mapping, since they assume a
fixed model for storage structures and algorithms. Therefore, such optimizers
may be more efficient but less extensible.

In the future, we intend to design a user-friendly query language which can
be translated directly into the fold algebra. Comprehensions are not adequate
for this purpose since they are less expressive than folds. We would like also
to define suitable fold operations for other data structures that cannot be cap-
tured as sums-of-products types. In particular, arrays are very interesting and
challenging since they support random accesses.
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