An Optimization Framework for Map-Reduce Queries

Leonidas Fegaras Chengkai Li Upa Gupta

University of Texas at Arlington

http://lambda.uta.edu/mrql/

EDBT 2012
Data Processing with Map-Reduce (MR)

- MR facilitates the parallel execution of ad-hoc, long-running, large-scale data analysis tasks on a shared-nothing cluster of commodity computers connected through a high-speed network.
 - Hides the details of parallelization, data distribution, fault-tolerance, and load balancing.
- Used extensively by companies on a very large scale.
- Several implementations:
 - Apache Hadoop, Google Sawzall, Microsoft Dryad, . . .
- Some higher-level languages that make MR programming easier:
 - HiveQL, PigLatin, Scope, Dryad/Linq, . . .
- Compared to an RDB, the MR framework:
 - Is better suited to large-scale data analysis on write-once in-situ data.
 - Often used to process data as is.
 - Offers better fault tolerance and the ability to operate in heterogeneous environments.

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/
The MR Programming Framework

Very simple model: need to specify a map and a reduce task

- the map task specifies how to process a single key/value pair to generate a set of intermediate key/value pairs
- the reduce task specifies how to merge all intermediate values associated with the same intermediate key
Background: MR vs SQL

- MR programs are computationally complete
- Regular SQL (join, selection, projection, group-by, having, order-by) can be directly coded using workflows of MR jobs

Example:

```java
select v.A, sum(v.B) from R as v group by v.A
```

can be coded in MR as:

```java
class Mapper
    method map ( key, v )
        emit(v.A,v);

class Reducer
    method reduce ( key, values )
        int c = 0;
        for each v in values do c += v.B;
        emit(key,c);
```
Background: Reduce-Side Join

Example:

```
select x.C, y.D
from X as x, Y as y
where x.A=y.B
```

can be coded in MR as:

```
class Mapper1
    method map ( key, x )
        emit(x.A,(1,x));

class Mapper2
    method map ( key, y )
        emit(y.B,(2,y));

class Reducer
    method reduce ( key, values )
        for each (1, x) ∈ values
        for each (2, y) ∈ values
            emit(key,(x.C,y.D));
```
Although the MR model is simple, it is hard to develop, optimize, and maintain non-trivial MR applications coded in a general-purpose programming language. To achieve good performance one needs to:

- tune many configuration parameters
- use custom serializers, comparators, and partitioners
- use special optimization techniques, such as in-mapper combining and in-reducer streaming

Program optimization would be more effective if the programs were written in a higher-level query language that hides the implementation details and is amenable to optimization.

There are many SQL-like MR query languages. The most popular is HiveQL.
Goal

Build a query processing system that translates SQL-like data analysis queries to efficient MR jobs

- HDFS as the physical storage layer
 - no indexing, no data partitioning/clustering
 - no normalization
 - no data statistics
- Hadoop as the run-time engine
 - no extensions

In the future, we may relax some of these restrictions
Build a query processing system that translates SQL-like data analysis queries to efficient MR jobs

- HDFS as the physical storage layer
 - no indexing, no data partitioning/clustering
 - no normalization
 - no data statistics
- Hadoop as the run-time engine
 - no extensions

In the future, we may relax some of these restrictions

But, if we use SQL and completely hide the MR layer, why don’t we just use a parallel RDB?

- MR is already used extensively; we can’t change this
- a good query processor may simplify and improve the way programmers develop data analysis applications and will make MR computing friendlier to non-expert programmers
- MR is actually good!
What is Wrong with Existing MR Query Languages?

Two major problems (to be justified next):

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries. This may result in suboptimal, error-prone, and hard-to-maintain code.

2. Current MR query processors apply traditional relational query optimization techniques that may be suboptimal in a MR environment.
MR-Completeness

A MR job over a relation R groups the tuples of R using the map function m and then applies the reduce function r to each group:

```sql
select k, r(group-values) 
from R as v 
group by k: m(v)
```

Current MR SQL-like query languages do not allow m and r to be nested queries and do not support access to the entire group, `group-values`, other than performing simple aggregations over the group elements.

Example: calculate one step of the k-means clustering algorithm by deriving k new centroids from the old

```sql
select avg(s.X) as X, avg(s.Y) as Y, avg(s.Z) as Z 
from Points as s 
group by (select * from Centroids as c order by distance(c,s))[0]
```
How can we Reach MR-Completeness?

A MR query language must

- allow nested queries and UDFs at any level and at any place provided that UDFs are pure (no side effects)
- allow to operate on all the grouped data using queries as is done for ODMG OQL and XQuery
- support custom aggregations/reductions using UDFs provided that they are pure, associative, and commutative
- support recursion or transitive closure declaratively to capture graph algorithms, such as PageRank
- support hierarchical data and nested collections uniformly allowing us to query JSON and XML data
- support custom parsing and custom data fragmentation given that MR does not support nested data parallelism
Two major problems:

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries
 may result in suboptimal, error-prone, and hard-to-maintain code
What is Wrong with Existing MR Query Languages?

Two major problems:

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries, which may result in suboptimal, error-prone, and hard-to-maintain code.

2. Current MR query processors apply traditional relational query optimization techniques that may be suboptimal in a MR environment.
Can we Optimize MR Queries Using RDB Technology?

Example from TPCH:

```sql
select c.CUSTKEY, c.NAME, avg(o.TOTALPRICE)
from Orders as o, Customer as c
where o.CUSTKEY=c.CUSTKEY
group by c.CUSTKEY, c.NAME
```

Hive evaluates this query using a join followed by a MR job (for the group-by), a total of 2 MR jobs.

This query can also be evaluated using just one reduce-side join. The set of orders fed to the reducer contains complete groups, which are ready for aggregation.

This is true for all queries whose join attributes are also group-by attributes. Can we patch a relational system to generate this join/group-by plan?
Can we Patch an RDB to Generate Combined Join/Group-By Operations?

By definition, a relational operation must return flat tuples

⇒ A group-by must always be combined with aggregation within the same operator

Consider nested queries (which are important for MR-completeness).

For simple correlated queries, such as

```sql
select f(select h(x,y)
          from Y as y where x.A=y.B)
from X as x
```

(where f and h denote some code)

it is not inconceivable that an RDB optimizer could be patched to generate a reduce-side join that incorporates the group-by at the reduce stage

... but
Can we Patch an RDB ...?

But what about this double-nested query:

\[
\begin{align*}
\text{select } & f(\text{select } g(\text{select } h(x,y,z) \text{ from } Z \text{ as } z \text{ where } z.C = y.D) \\
& \text{ from } Y \text{ as } y \text{ where } x.A = y.B) \\
& \text{ from } X \text{ as } x
\end{align*}
\]

One good plan is to use two reduce-side joins (2 MR jobs only):

1. a join between X and Y that emits a nested set of pairs \((x,ys)\):
 for each \(x\), the set \(ys\) contains all the matching values \(y\)

2. a join between the result and Z, which computes the final query result
 at the reduce stage

The reducer of the 2\(^{nd}\) join receives two sets (mixed) from the two inputs:
the set \(XY\) from the first join, which is the nested set \((x,ys)\), and the set \(Zs\) of \(z\) tuples, and evaluates in memory:

\[
\begin{align*}
\text{select } & f(\text{select } g(\text{select } h(x,y,z) \text{ from } z \in Zs) \\
& \text{ from } y \in ys) \\
& \text{ from } (x,ys) \in XY
\end{align*}
\] (pseudo-SQL)
Can we Patch an RDB ...?

The reduce-side join plan again:

1. A join between X and Y that emits a nested set of pairs \((x, ys)\):
 - For each \(x\), \(ys\) contains all the matching values \(y\)

2. A join between the result and Z, which computes the final query result at the reduce stage

It is impossible to capture the first join as a purely relational operator

\[\Rightarrow\text{ need nested relations!}\]

Side note:

- Some MR query languages use outer-joins with group-bys to simulate nested queries
- Bad idea!
 - May miss opportunities of using a combined join/group-by
The MRQL syntax has been influenced by some functional query languages, such as ODMG OQL and XQuery.

The MRQL semantics is based on list comprehensions with group-by and order-by.

It is implemented in Java on top of Hadoop.

Allows arbitrary query nesting, UDFs, custom aggregations, and custom parsers.

Can operate on complex data, such as nested collections and trees.

Can process:
- record-oriented text documents that contain basic values separated by user-defined delimiters
- XML and JSON documents
- binary encoded documents

Note: This work is about optimizing MR queries. It can apply to other suitable languages, such as OQL and XQuery.
A MR job:

\[
\text{MapReduce}(m, r) S
\]

transforms a data set \(S \) of type \(\{ \alpha \} \) into a data set of type \(\{ \beta \} \) using a map function \(m \) and a reduce function \(r \) with types:

\[
m: \quad \alpha \rightarrow \{(\kappa,\gamma)\}
\]

\[
r: \quad (\kappa,\{\gamma\}) \rightarrow \{\beta\}
\]

Semantics:

\[
\text{MapReduce}(m, r) S = \text{concatMap}(r) (\text{groupBy}(\text{concatMap}(m) S))
\]

where:

\[
\text{concatMap}(f): \quad \{\alpha\} \rightarrow \{\beta\}, \quad \text{given that } f: \alpha \rightarrow \{\beta\}
\]

\[
\text{groupBy}: \quad ((\kappa,\alpha)) \rightarrow \{(\kappa,\{\alpha\})\}
\]

concatMap generalizes \(\pi, \sigma, \) and \(\mu \)
MRQL is MR-Complete

Any

\[
\text{MapReduce}(m, r) S
\]

can be expressed in MRQL as:

\[
\begin{align*}
\text{select} & \quad w \\
\text{from} & \quad z \quad \text{in} \quad (\text{select} \quad r(\text{key}, y) \\
& \quad \text{from} \quad x \quad \text{in} \quad S, \\
& \quad (k, y) \quad \text{in} \quad m(x) \\
& \quad \text{group by} \quad \text{key: k}), \\
\text{w} & \quad \text{in} \quad z
\end{align*}
\]
The reduce-side join

ReduceSideJoin\((m_x, m_y, r)(X, Y)\)

joins the data set \(X\) of type \(\{\alpha\}\) with the data set \(Y\) of type \(\{\beta\}\) to form a data set of type \(\{\gamma\}\), where

\[
\begin{align*}
 m_x &: \alpha \rightarrow \{(\kappa, \alpha')\} \\
 m_y &: \beta \rightarrow \{(\kappa, \beta')\} \\
 r &: (\{\alpha'\}, \{\beta'\}) \rightarrow \{\gamma\}
\end{align*}
\]

The mappers \(m_x\) and \(m_y\) calculate the join keys \(\kappa\) and the reducer \(r\) combines the tuples from \(X\) and \(Y\) that correspond to the same join key.

Its semantics is given in terms of concatMap, groupBy, and union.

Other join implementations: MapJoin (1 map job), MapJoinReduce (1 MR job), and BlockNestedLoop (1 map job)
The MRQL Query Algebra

Most important algebraic operators: concatMap, groupBy, union, and join

The MRQL join is a restricted version of ReduceSideJoin. It joins the bag X of type $\{\alpha\}$ with the bag Y of type $\{\beta\}$ to form a bag of type $\{\gamma\}$:

$$\text{join}(k_x, k_y, r)(X, Y)$$

where

$$k_x: \alpha \rightarrow \kappa$$
$$k_y: \beta \rightarrow \kappa$$
$$r: (\{\alpha\}, \{\beta\}) \rightarrow \{\gamma\}$$
Some optimizations:

- Fusing a join with a group-by if the group-by key is the same as the join key:

\[
\text{join}(\pi_1, k_y, r) (\text{groupBy}(X), Y) = \text{join}(\pi_1, k_y, \lambda(xs, ys).r(\text{groupBy}(xs), ys)) (X, Y)
\]

where \(\pi_1(x, y) = x \)

- Converting a self-join into a simple MapReduce operation that operates over the input data set once:

\[
\text{join}(k_x, k_y, r) (X, X) = \text{MapReduce}(\lambda x. \{(k_x(x), (1, x)), (k_y(x), (2, x))\}, \\
\lambda(k, s).r(\text{select } x \text{ from } (1, x) \in s, \\
\text{select } x \text{ from } (2, x) \in s)) X
\]
Example: The PageRank Algorithm

A web graph is represented as a set of links, where each link has a source, a destination, the total number of its outgoing links, and its current PageRank.

One step of the PageRank algorithm derives a new set of edges from the old set, changing only their rank:

```sql
SELECT m.source, m.dest, m.count, c.rank
FROM (SELECT n.dest, SUM(n.rank/n.count) AS rank
      FROM Graph AS n
      GROUP BY n.dest) AS c,
      Graph AS m
WHERE m.source = c.dest
```

(SQL query)

Needs just 1 MR job:

- fuse the join with the group-by ⇒ a self-join over Graph
- convert the self-join to a single MR job
The Complete PageRank in MRQL

\[
\text{graph} = \text{select } (\text{key}, \text{n.to}) \\
\text{from } n \text{ in source(line, "graph.csv", ...)} \\
\text{group by key: n.id} \\
\text{preprocessing: 1 MR job}
\]

size = count(graph);

\[
\text{select } (x.id, x.rank) \\
\text{from } x \text{ in } \\
(\text{repeat nodes} = \text{select } <\text{id: key, rank: 1.0/size, adjacent: al}> \\
\text{from } (\text{key,al}) \text{ in graph} \\
\text{init step: 1 MR job}) \\
\text{step select } (<\text{id: m.id, rank: n.rank, adjacent: m.adjacent}>, \\
\text{abs((n.rank-m.rank)/m.rank)} > 0.1) \\
\text{from } n \text{ in } (\text{select } <\text{id: key, rank: 0.25/size+0.85*sum(c.rank)}> \\
\text{from } c \text{ in } (\text{select } <\text{id: a, rank: n.rank/count(n.adjacent)}> \\
\text{from } n \text{ in } \text{nodes, a in n.adjacent} >) \\
\text{group by key: c.id}, \\
m \text{ in } \text{nodes} \\
\text{where n.id = m.id}) \\
\text{repeat step: 1 MR job}
\]

\[
\text{order by x.rank desc} \\
\text{postprocessing: 1 MR job}
\]
The MRQL Query Optimizer

- uses a novel cost-based optimization framework to map algebraic forms to efficient workflows of physical plan operators
- uses a polynomial heuristic algorithm for query graph reduction
- handles deeply nested queries, of any form and at any nesting level, and converts them to near-optimal join plans
- handles dependent joins (used for nested collections and XML data)

Our cost model is currently incomplete
We plan to develop an adaptive optimization system to
- incrementally reduce the query graph at run-time
- extend the reduce stage of a map-reduce operation to generate enough statistics to decide about the next graph reduction step
Future Work

- Self-tuning
- Want to query both raw data and structured data, such as RDBs and key/value indexes, in the same query language
- Want to capture scientific data & computations
 need to introduce the concept of data neighborhood
 need to be able to access ‘adjacent’ data (eg, for data smoothing)
- Want to define complex custom parsers declaratively
 need to go beyond Regular Expressions to capture LALR grammars
Related Work

- Many higher-level languages:
 - HiveQL, PigLatin, PACT/Nephele, SCOPE, Dryad/Linq,…
- *HadoopDB*: a hybrid scheme between MR and parallel databases
- *Manimal*: analyzes the MR code to find opportunities for using B^+-tree indexes, projections, and data compression
- *Asterix*: a scalable platform to store, manage, and analyze large volumes of semistructured data
 - uses its own distributed data store, Hyracks
- *YSmart*: intra-query optimization by factoring out correlated operations
How does MRQL Compare with Hive?

- For simple join/group-by queries: they are about the same
- For queries that need optimization, such as fusing joins with group-bys, self-joins etc: MRQL is a clear winner
- For complex/nested queries, nested data, complex aggregations: no competition
Performance Evaluation

PageRank evaluation over DBLP (865MB XML) and the Hungarian Web (734MBs, 500K nodes 14M links)
Setup: 8 nodes/32 cores

(B) PageRank over DBLP data with/without optimization

(C) PageRank over the Hungarian Web with/without optimization