A Fold for All Seasons

Tim Sheard

Leonidas Fegaras

Pacific Software Research Center
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999

{sheard fegaras}@cse.ogi.edu

Abstract

Generic control operators, such as fold, can be generated
from algebraic type definitions. The class of types to which
these techniques are applicable is generalized to all alge-
braic types definable in languages such as Miranda and ML,
i.e. mutually recursive sums-of-products with tuples and
function types. Several other useful generic operators, also
applicable to every type in this class, also are described.

A normalization algorithm which automatically calcu-
lates improvements to programs expressed in a language
based upon folds is described. It reduces programs, ex-
pressed using fold as the exclusive control operator, to a
canonical form. Based upon a generic promotion theorem,
the algorithm 1is facilitated by the explicit structure of fold
programs rather than using an analysis phase to search for
implicit structure. Canonical programs are minimal in the
sense that they contain the fewest number of fold opera-
tions. Because of this property, the normalization algorithm
has important applications in program transformation, op-
timization, and theorem proving.

In addition a generic promotion theorem is identified for
each of the other operators. It is hoped that these theorems
can be the basis of normalization algorithms for the other
operators as well.

1 Introduction

It has been argued that functional languages are important
because they support forms of modularity that are difficult to
support in other languages [16, 10]. Recent work by Mal-
colm [12], Meijer, Fokkinga, and Paterson [13], and Cockett
with the programming language Charity [2] has suggested an
even higher level of modularity and abstraction may be ob-
tained by the use of generic control structures which capture
patterns of recursion for a large class of types in a uniform
way. This is important for several reasons:

e Abstraction. It allows the specification of algorithms
independent of the type of data structures they are to
operate on, since the control structure of the algorithm
is generated for each datatype.

o Genericity. It allows the statement, proof, and use
of generic theorems. In this manner, a theorem can be
stated and proved in the abstract and then applied in
many different concrete instances.

e Structure. Programming with recursive definitions
and higher order functions is a powerful technique but
it does not impose much structure on the form of the
programs that may be expressed. This desire for struc-
ture is motivated for many of the same reasons that
the “structured programming” methodology for im-
perative programs was motivated, but it has an even
larger payback. While structure can facilitate under-
standing and maintainability in either paradigm, func-
tional programs are often the target of transformation
and optimization techniques. These techniques gener-
ally search for implicit structure in programs to val-
idate particular transformations. If structure is ex-
plicit, rather than implicit, the job of the transforma-
tion system is made easier.

It is important that these operators be as widely applica-
ble as possible and that transformation techniques exploit-
ing these operators be developed, thus the contribution of
this work is two fold:

e First, while these operators have previously been re-
stricted to simple sums-of-products datatypes, they
are in fact much more general. In this paper we extend
these control structures to mutually recursive sums-of-
products with tuples and function types.

e Second, rather than use general laws about these op-
erators in an ad hoc way, we show that these laws
can support calculation-based (rather than a search-
based) program transformation methods. We intro-
duce a normalization algorithm which automatically
calculates improvements to programs expressed in a
language based upon one of these operators. It re-
duces programs, (expressed using fold as the exclusive
control operator), to a canonical form. Canonical pro-
grams are minimal in the sense that they contain the
fewest number of fold operations.

The normalization algorithm exploits the explicit struc-
ture of fold programs. Therefore programs in this form
can be transformed using fully automated tools. Because



canonical programs are minimal, the normalization algo-
rithm has important applications in program transforma-
tion, optimization, and theorem proving. For example:

e Automation of the unfold-simplify-fold method [4] with-
out the intervention of explicit laws. In addition, “eu-
reka” steps are not necessary here during folding to a
function call as they are incorporated in the general-

ization part of the normalization algorithm.

e Automation of the techniques of listlessness, deforesta-
tion and fusion [15, 1, 8, 14] for a class of fold pro-
grams. These techniques remove unnecessary interme-
diate data structures produced during nested calls.

e Automation of a simple form of partial evaluation. If
the parameter of a fold term is instantiated with other
fold terms, (for example a piece of “data”, i.e. a con-
stant or ground term constructed wholly from con-
structors), then the normalization algonthm will re-
duce this program into canonical form that is specific
to these instantiations and, furthermore, any “paths”
in the original program not reachable with the current
data will be removed from the resulting program.

e Theorem Proving. The equality of two programs can
be checked by reducing them both to canonical form
and comparing the results.

In Section 2 we review the work of Meijer, et al. [13]. We
begin by introducing a different notation which originates
from the work of Hagino [9] and is extended by Cockett [2].
We feel that this notation makes these ideas more acces-
sible to functional programmers. We conclude this section
by using this notation to formally define the familiar fold
operator for simple algebraic types.

In Sections 3 and 4 we extend this notation to cover the
complete set of types definable in languages such as Miranda
and ML by extending it to cover mutually recursive sums-
of-products with function types.

In Section 5 we define a term language in which fold is the
only control structure, and introduce a reduction algorithm
which we prove reduces fold programs to canonical form.
One example of a reduction is described.

In Sections 6 — 7 we use our notation to define a number
of other patterns of recursion in various levels of detail. Each
pattern is accompanied by a generic promotion theorem.

In Section 8 we briefly compare our work to previous
results.

In the last section we conclude and discuss future work.

2 Background

In this section we review previous work [12, 13] and intro-
duce an alternative notation that will facilitate extension.

2.1 Simple Types

The type definitions considered in this section are the simple
sums-of-product types defined by using recursive equations
of the form:

where a1, ..., ap denote type variables, the C; are names of
value constructor functions, and ¢; ; are either type variables
(in the set ai,...,a}) or instantiations of sums-of-products
types, mCludmg uniform® use of the type T itself. No mu-
tually recursive types or types with tuples or function types
are allowed. We will lift these restrictions in Sections 3 and 4

For example, the following are simple sums-of-products
type definitions:

boolean = False | True
prod(a,3) = Pair(a,p)
list(a) = Nil | Cons(e,list(a))
int = Zero | Succ(int)
tree(a) = Tip(a) | Node(tree(a),tree(a))
bush(e) = Leaf(a) | Branch(list(bush(a)))

Functions manipulating values of these types will use a pat-
tern of recursion related to the pattern of recursion in the
type definitions. To capture these patterns we turn to the
categorical notion of a functor.

2.2  Functors

We define below the functor, E, (which is really the mor-
phism part of a categorical functor). The property of any
functor, F, that we require is:

F(fi,....fn)oF(h1,....hn) = F(fiohi,..., fnohy)
which may easily be verified for our definition below.

Definition 1 (The Functor E) Associated with each con-
structor, Cs : (tia,..., ctimg) — T(a1,....ap) isa(p+1)-
adic functor ?:

EX(fi..... o fr) =
)\(:61?1, cos Timg ) (K tialzia, oo Ktiom, )i m;)

where the bound variables, z;; have type, t;;, and K[t;,]
represents a function that can be obtained by the following
rules:

Klax] = fx (1)
K[T(a1,..., ap)] = fr (2)
K[S(ti,...,ty)] = map” (K[t],....K[t)]) (3)

where map®, for a previously deﬁned type S(a, ..., aq), can

be defined using the functors, EY :

(maps(f17""f<1))oc = C7O(Els(f17"'7f<17ma'ps(f17"'7f<1)))

For example, for type list:

Ena(f.9) = 20.0
Econs(f.9) = XMz.y).(fz. g9y)
and for bush:
Ereag(f.9) = Mz).(f2)
Eprancn(f.9) = Az).(map"*’ (g) z)
where
**(f) Nil = Nil
map'' <’ (f) (Cons(a,l)) = Cons(f a, map”* (f)1)

1By uniform we mean that recursive use of the type constructor 7'
is restricted to applications to the free type variables in the same order
as they appear on the left hand side of the recursive type equation.

2 Where p is the number of universally quantified type variables in
the left hand side of T'’s type equation.



2.3 Folds

With this notation it is now possible to describe the familiar
fold (catamorphism [13]) operator for any simple sums-of-
products type.

Definition 2 (Fold) The fold function over T(a; ...ay) is
defined by the following set of recursive equations, one for
each constructor, C; :

(fold” (F)) 0 C; = fi o (E] (ids, ..., idyp, fold” (¥)))

where f = (f1.-..; fn) and for each indez j§, 1d, is the iden-
tity function.

We call each fi in f an accumulating function.
For example, the list fold is defined as:

fold"*** (fn, fe) Nil = fn()
fold"=* (fn, fo) (Cons(a,l)) = fe(a,fold™* (fn, f) 1)

The following are some examples of computations that can

be defined using folds:

copy(z) = fold"**(A().Nil, A(a, 7).Cons(a, 7)) «
append(z, y) = fold"**(A().y. A(a, r) Cons(a,r))
length(z) = fold"**(X().Zero, A(a, r).Succ(r)) =
T4y = fold™*(A().y, A(r).Succ(r)) =

T Xy = fold"™*(A().Zero, A(r).y + 1) =

TNy = fold®*?'®*(X().False, A().y) =

if z then yelse z = foldboozea"()\().z, A().y) z

The general law which applies to all fold functions is
called the promotion theorem. We will use this theorem as
a major component of our automated transformation algo-
rithm, called the normalization algorithm. The promotion
theorem states that the composition of any function g with
some fold is another fold whose accumulating functions are
related to the accumulating functions of the original fold by
fixed equations. The normalization algorithm will describe
how these new accumulating functions can be calculated.
The promotion theorem for folds has appeared in the liter-
ature using various notations [12, 13]:

Theorem 1 (The Fold Promotion Theorem)

Yi: ¢;0 EX(id1,... idp,g) = go fi
gofold”(f) = fold” ()
Proof: Let n = gofoldT(T) and C; a constructor of 7. Then
noC; = gofoldT(T) o C;
=go fio El(idy, ..., idp, foldT(f))
by Deﬁmtlon 2
= ¢; 0 Ef (idy, ..., cidp. g) o EX(idy, ... ,idp, fold™ (£))
by premise
= ¢; 0 EX (id, ..., idp, g o foldT (f))
by COIIIpOSlthIl under E;

= ¢; 0 EX (idv, ..., idp, )
by definition of 5

Therefore, no C; = ¢; 0 EX (idi,...,idp, n), which shows

that 5 has a form of a fold with accumulating functions ¢
(by Definition 2). Thus 5 = fold(4). O

For example the promotion theorem for list is:

én() 9(fn())
dcla, g(r)) g(fe(a, 7))

g(fold" < (fn, fo) ) = fold"*(¢n, de) «

3 Types with Tuples and Exponentials

A tuple type, T, is a sums-of-products type where the prod-
ucts may contain tuple types, t1 x ... x t,. For example:

association(a, 8) = Alist(list(a x 3))

An exponential type, T, is a sums-of-products type where
the products may contain function types, f — 5. For ex-
ample, potentially infinite lists can be defined in a strict
language as an exponential type as follows:

ilist(a) = Inil | Icons(a, () — ilist(a))

where () is the unit type (the unique type of the empty
tuple).

To define a fold over sums-of-products with tuples and
function types we need only to generalize the functor, £. We
do this by adding the following rules to K in Definition 1.

Kr[t1,t2] = )\(z1,z2).([\f[t1] :E1,Kr[t2] :EQ) (4)
Ah. K[v]o ho K[u] (5)
id (6)

Ku — v]
KT()]

For example, for type #list:

Ernit(fa. fr) AQ).
Elcons(fayfT) x,

A

0
.9)-(faz, (Ah. fr o hoid)g)
Mz, g

)-(faz, frog)

While the fold function derived from this generalized
functor is defined for all sums-of-products with tuples and
function types it is not particularly useful. To be useful, it
is necessary to restrict each function type to be covariant in
T [5], otherwise K[t] may not be a functor.

For example the fold for #list is:

fold*"*<* (£, f.) Inil = fa()
fold """ (f,, fc) Icons(a, g) = fe(a,(fold™** (fn, fc)) 0 g)

4 Mutually Recursive Types

A set of mutually recursive types can be defined by a set of
mutually recursive equations of the form:

AsG[l...T] Te(ar, ..., ap) = C1TS (t11, .. '7t1¢m1)

| CT (tna, tm,)

where the Ty, ..., T, are the types being defined. For exam-
ple consider the type which models a very simple expression
language with local declarations®:

exp(a.8) =  Var(a)

| Let(dec(a, 8),exp(a,3))

| Apply(exp o, ﬁ),exp a,f))
| Fun(string, 8, exp(a, 3))

N dec(a,8)

As in the simple case, associated with each constructor, C;,
is functor, EI. If there are r mutually recursive types,

3 As one might find in an ML like language with only variables,
application, and let expressions.



Ti,..., .1y, and Constructor C S (tia,. .. :tumz) — T, then

ETs(f oo foifras e fT) =
Mzi, ...,z m,) (K[t 1]z, 1....,I'[t,?mz]z,?mz)

where the bound variables, z;; have type, t; ;. we replace
rule (2) in the defintion of K in Definition 1 with:

K'[T!(alr s ap)] = [ (2)

Generic functions, such as map and fold, defined over mutu-
ally recursive types will be mutually recursive functions. For
example, the map functions for a set of mutually recursive
types, T1,...,7T,, are defined by the equations:

/\56[1...7] map”* (7) 0 CzTS =

where (f)is (fi...., fp)-

For example, the map for ezp and dec is given by:
map®“?(h)(Var z) =

3
map““? (k)(Let(z. y))
map“*?(h)(Apply(z,y)) =

Var(fz) B
Let(map®(F) 2, map***(F) y)

Val(g =, map®? E) )
Fun(z,y, map**? (k) z)

]

o
2,
m
o
—_
o> 3
b el
=
<

)
| =
=

5]

N3
)
=

|

Definition 3 (Mutually Recursive Fold) The mutually
recursive fold functions over the types T1,...., T, is defined
by the following set of mutually recursive equations:

ASE[J...T]

fold™s (f) o CT* =
flro El(idy, ... idy, fold™2 (F), ..., fold™ ()

Where (T):(( 1Tl,..., nTll)(flTrfnT)) a tuple of

tuples of accumulating functions.

For example, the mutually recursive fold functions for ezp
and dec are:

fold**?(f)(Var z) = Vfz
fold**(f)(Let(z, y)) = Lf(fold***(f) z. fold***(f) y)
fold**?(f)(Apply(z.y)) = Af(fold“*P(f)z,fold***(f) y)

Valf(z, fold*®P (f) y)

fold“*“(f)(Val(z, y)) = Y
f Funf(z, y, fold**P( f) z)

fold®¢(f)(Fun(z,y, z)) =
where (7) is ((VFf, Lf, Af), (Valf, Funf)).

Theorem 2 (Mutually Recursive Fold Promotion)

Ve (Flx : qb,oET"(zdl....,idp,idl...,g,...,idT) = gofi

Apply (map**?(h) z, map**?(h) y)

gofold™ (f,,.... -, f,) =

Proof: Analogous to Theorem 1. O
That is, for a fold over the type Tk, the k' type in a set
of mutually recursive types, (T1,...,7;,), the function, g, is

placed in only the &' recursive position of E;.

5 Normalization of Fold Expressions

The normalization algorithm reduces any fold applied to an-
other fold into a fold applied to a variable. This reduced pro-
gram has fewer folds. Since every fold builds a data struc-
ture, improved programs will build fewer intermediate data
structures.

Program normalization is accomplished by pushing the
outer fold into the accumulating functions of the inner fold,
as is directed by the promotion theorem. This is a gener-
alization of nested loop fusion to arbitrary types because
the outer fold will be pushed inside the inner one until it is
eliminated by the generalizations introduced by the normal-
ization algorithm.

5.1 The Term Language

In the following definitions we assume that programs are
well-typed by a ML-style polymorphic type-checker, and
that all folds are over mutually recursive sums-of-products
types that may include tuples and function types. Any non-
mutually recursive fold is handled as a fold over mutually
recursive with only a single type.

Definition 4 (The Term Language) A program in the
term language has the form A(z1,...,z,).t, where each z;
18 a vartable and t is a term. Fach term has one of the
following forms:

e variable: z, bound in some outer lambda abstraction;

e construction: C(t1,.. .,tn)f where C is a constructor
and each t; is a term;

o fold: fold™s ((f*. ... fi), ..o, (fr .o fE)) ¢, that
18, a mutually recursive fold over a term, t, of type 1,
where T, is one of a set of mutually recursive types
Ti,....T.. Each f; T has the form Az, ., Tm)-ti,

where each z; is a variable and t; is a term

Definition 5 (Accumulative Result Variable) Each ac-
cumulating function fT" i a fold in the term language has
the form A(z1, ..., Zm).t, where the types of the bound vari-
ables, x1,..., L Em, Are assoczated with the types, tl. v tm,
in the domam of the corresponding constructor C, Tk Each
bound variable, z,, whose associated type, t,, mentions at
least one of the recursive types 11,..., 1, is an accumula-
tive result variable.

For example, in the definition of append

append(z,y) = fold"**(A().y, A(a,r).Cons(a,r)) =

r is an accumulative result variable.

Definition 6 (Potentially Normalizable Program)

A program in the term language is potentially normalizable
of it does not contain terms foldT(f)t where t contains a
reference to an accumulative result variable which is bound
in an outer lambda abstraction.

For example of a term which is not potentially normaliz-
able consider the reverse function normally defined by the
recursion equations:

rev Nil

rev (Cons(z, zs))

Nil

append(rev zs, Cons(z

i)



which can be expressed as the fold:

fold"**(X().Nil, A(a, r).append(r, Cons(a, Nil))) =
fold'* f A().Nil,
)\(a )fold“ F(A().Cons(a, Nil), A(

where the append function has been expanded to a fold in
the second equation. Any term using rev is not potentially
normalizable, because the inner fold is over r, an accumula-
tive result variable.

Definition 7 (Canonical Terms) A canonical term is a
term in which

o all folds in the term are over variables;

e none of these variables are accumulative result vari-
ables.

Note that a canonical term is always a potentially normaliz-
able term. We will show that if a program in our term lan-
guage is potentially normalizable then it can be transformed
into a canonical program by the normalization algorithm.

5.2 The Normalization Algorithm

The normalization algorithm is a meaning preserving trans-
formation from term to term. It uses a parameter, p, which
is a partial function from terms to variables. In our no-
tation, p[g/r] extends p with the mapping from g to r,
while p[(gl ..... .gn)/(r1,...,70)] extends p with the map-
pings from g; to ;.

The normalization algorithm consists of the following
parts:

o Generalization: If the normalization algorithm derives
a term mapped in p to some variable v, then this term
is replaced by v.

o Application to a Construction: From the fold defini-
tion:

fold ™= (F)(CT* (@) = B
1k (ETS (idy, ..., idp, fold™r (£), ..., fold™* (f))(@))

E.g., for length = fold"**(\().Zero, A(a, r).Succ(r)):
length(Cons(a,{)) = Succ(length(l))
e Fold Promotion: If the term is a composition
g(fold ™ (f) =)

where ¢ is a fold, then the fold promotion theorem is
applied to derive the term, foldTS(cb) z, where

6= ((61% .08 )s (@17 $L)) and for all k
and 1, (;51" is computed by recursively improving the
equation:

where all z; and r; are new variables. In each case, p
is extended with the mappings from terms in
(E; k(zdl....,idq,idl,...,gk,....zd N z1,---, . ZTm;)) to

variables 1, ..., rp,.

b, s).Cons(b, s))r) z

For example, from the fold promotion theorem for lists:

g(fold"*! (fu, fe) 2) = fold"**(¢n. pc) =

where
¢n() = 9(f2())
pe(ri,r2) = g(fe(z1.22)) plz1/r1, g(z2)/r2]
If C; has type (t1,...,tm) — T, then ¢; satisfies

¢i(K[t1] z1, .. ., K[tm] zm) = g(fz(zl. ...;Zm)). In order to
solve this equatlon for ¢;:, we need to transform g(fi(z1,...,%m))
into a term X(K[t1]z1,..., K[tm] zm), where X' does not
depend on any of z;. Then generahzmg K[ti]z: to the vari-
able r; we find ¢; = AX. The generalization function, p,

plays this role.

The normalization algorithm can be implemented very
efficiently. Whenever we apply the promotion theorem we
annotate each function g (the left part of the application)
with a new number. Then, instead of inserting g(:c,)/n in
p, for some variables z; and r;, we insert the triple of this
number with z; and r;. Then the generalization phase is
done by checking if the current term f(z) was annotated
by a number already in p. That way, the complexity of the
normalization algorithm is linear in the size of the resulting
canonical term.

5.3 One Example of Program Normalization

The following normalizes the composition length(append(z, y))
where:

length(z) = fold"**(A().Zero, A(a, r).Succ(r)) =
append(l":y) fOld“St(fT“fC)_’L‘

Where{ o= A

a,r).Cons(a,r)

We need to find some foldl”t(qbn,(bc)z equivalent to the
composition length(append(z,y)). The normalization algo-
rithm for g = length gives:

¢n() = length(fa())
where p =[]
length(y)
= fold"“**(X().Zero, A(a, 7).Succ(r)) y
¢C(T17T2) = length(fc(:l:l: zQ))

where p = [z1/r1, length(z2)/r2]
length(Cons(z1, z2))
Succ(length(z2))
Succ(rz)

(length(z2) was generalized to rz)

Therefore, the composition length(append(z,y)) is:

fold"**(X().fold"***(X().Zero, A(a, r).Succ(r)) y,
)\(r1,r2).SuCC(r2)) T

Note that the intermediate list structure append(z,y) is no
longer produced.
5.4 Correctness of the Normalization Algorithm

In this section we outline a proof that the normalization al-
gorithm transforms any potentially normalizable term into



canonical form. Here we consider folds consisting of sums-
of-products types where the recursive type, T, does not ap-
pear as a parameter to some other parametric type. That
is, we do not consider types such as bush(a) = Leaf(a) |
Branch(list (bush(a))).

We can see from the definitions of the term language and
canonical forms that folds, g, of the form foldT(f)t need to
be rewritten into folds over variables.

If t is a construction, then we apply the application-to-a-
construction rule. In that case the fold, ¢, is pushed inside
to only those components of the construction that have re-
cursive type.

If ¢ is a fold, then g is pushed into the accumulators of
the inner fold, as is directed by the fold promotion theorem,
and some new mappings are attached to p.

After recursively applying the normalization algorithm
only terms of the form g(z), where z is a variable, remain.
If z is an accumulative result variable, then, from the way p
was extended during promotion, g(z) is always bound in p
to some new variable, r. This is the generalization phase of
the algorithm. If z is not an accumulative result variable,
then g(z) remains as is. Therefore, all folds in the resulting
term are over non-accumulative result variables. It is nec-
essary to prove that after fold promotion there remain no
references of the old accumulative result variables z; in the
improved g(fi(#1,...,%m,)) (other than those of the form,
g(z:), which have been generalized to r;), leaving the term
#i(r1,...,Tm,). There are two places that this could happen
(that will be ruled out):

e An accumulative result variable, z, is inside a non-
recursive subcomponent of a construction (because g
is not pushed inside these components). This is impos-
sible as it is ruled out by type considerations. Consider
the term, h(Cons(z,!)), where z is an accumulative re-
sult variable. Either h is the identity, a construction or
a fold. A fold is ruled out since this would imply a fold
over a term containing an accumulative result variable.
Note that the terms, h(Cons(z,!)) and z, must have
the same type, T(a). This rules out the identity func-
tion and constructions since they lead to the circular
type equations of the form list(7(a)) = 7(a), and all
terms are well typed.

e An accumulative result variable appears in a term, ¢,
traversed by a fold: foldT(f)t (because g is not pushed
inside t during promotion). This too is ruled out given
that all terms are potentially normalizable.

The composition of two or more canonical terms is a po-
tentially normalizable term and, therefore, it can be reduced
to canonical form. This makes our canonical term language
closed under composition.

6 Other Patterns of Recursion

In this section we catalog other patterns of recursion which
have appeared in the literature or been investigated by the
authors.

6.1 Derivations

The Derive operator (anamorphism [13], unfold [3]) is the
opposite of the fold operator. Rather than traversing an
object of type T to produce a result value, it constructs an

object of type T from a seed value. To describe derivations
some additional mechanism is needed.

6.1.1 Prime Types

Associated with each type, 7, is a related (non-recursive)
type, T', such that if T is defined by:

T@) = Ci(tia,--.timg) | o | Ca(tnas-- - tnm,)

then 7' is defined by:
T(ER) = 01(51?1....,51?7”1) | | C;L(Smlpuysmmn)

where s;; = ti,[T(a1,...,ap)/R]. T' has one more uni-
versally quantified type variable. To obtain the right hand
side of the equation defining 7', this variable replaces all
(recursive) occurrences of 7(ai,...,ap) in the right hand
side of the equation for 7.

In category theory, T is often defined in terms of 7', as
its least fixed point. Since functional programmers are ac-
customed to writing recursive equations, we choose to define

T' in terms of T. Some examples are:

list(a) = Nil | Cons(a,list(a))
list'(e, R) = Nil' | Cons'(a, R)

bush(a) = Leaf(a) | Branch(list(bush(a)))
bush’(a, R) = Leaf(«) | Branch'(list(R))

Note that the mapTl defined by the equations:

map” (fi,.-. fp fR) 0 Cl = Clo EX(fi. .., fp. fR)

. . 7 - . T!
is a functor. Note that since 7’ is not recursive, map

is not recursive either. And since 7 and 7’ have the same
“shape”, it is possible to use the functor EI in the definition

of mapTl. For example:

Nil’
Cons'(f z, R z3)

map"**’ (f, R) Nil’
mapl“tl (f. R) (Cons'(z, zs))

The function in? defined by in? = foldTl (Cu,..., Cn) can

also be given by the equations: /

imToC! = G
It injects a value of type T' (a1, ..., ap, T(a1,...,ap)) to the
type T(a1,...,ap). For example:
in“** Nil’ = Nil
in'*** (Cons’(z,zs)) = Cons(z,zs)

Definition 8 (Derive) The derive function with type 3 —
T(a1,...,ap) is given by a template of the form

Derive’ P = in7o (mapTl(ich ..... idp, Derive” P))o P

The function P is called a splitting function and has type
B—T(a1,...,apB).

For example, the derivation for list could be written as:

Derive'® P ¢ =
case P z of
Nil’ = Nil
| Cons'(z,zs) = Cons(z, Derive’* P zs)



Using this definition, the list of integers from starting point
n, upto m, is given by the derivation:

Derive"**(Az. if £ > m then Nil else Cons'(z,z 4+ 1)) n

Unlike folds, which always terminate (if their accumulating
functions terminate), it is possible to construct derivations
which construct infinite values. For example, the infinite list
from starting point n, is given by the derivation:

Derive"** (A z. Cons'(z,z + 1)) n

In this example the splitting function never returns Nil’, so
the derivation expands indefinitely.

Theorem 3 (The Derive Promotion Theorem)

mapTl(idl,...,idp,g) op = Pog
(Derive” P)og = Derive” ¢

Proof: Let 1 = (Derive” P)o g.

7 = (Derive” P)oyg

= inTo mapTl(id1, ... idp, Derivel P)oPoyg
by Definition 8

=inTo mapTl(id1, ..., idy, Derive” P)

o map” (ids, . ...1dp, g) 0 ¢

by premise

= inTo mapTl(idl, <oy idp, (Derive” P)og)o ¢
by composition under mapTl

= in” omap” (idy,....idy.7)0 ¢

by definition of 7.

Thus we see that 5 has the form of a derivation with splitting
function ¢. O

6.2 Primitive Recursion

While the fold function for a type T is a useful function it
is not as general as one would like. Consider the factorial
function and the fold for int:

fold'™* (f., fs) Zero = f()
fold™ (f.. £.) Succ(z) = f.(Told"™ (f..f.) z)

Straight-forward* attempts to capture factorial as a fold over
the natural numbers fail since the accumulating function f.
is not passed a copy of the value of z, but only the result
of recursively transforming z. A fold-like function in which
the accumulating functions are passed both the original vari-
able, and the recursively transformed value can capture (in
a straight-forward manner) a larger class of functions. Such
a function for nt, and a definition for factorial in terms of
it follows:

Pt (fs, f<) Zero = f:0)
Pr*™ (£, f.) Succ(z) felz, Pr'™ (f2, fe) x)

factn = Pr'™ (A().1,A(5,r)i*xr)n

We call such a function for a type constructor T a prim:-
tive recursion function (paramorphism [13]) for T, since it
generalizes the primitive recursion induction scheme of the
natural numbers to an arbitrary type.

4By straight-forward we mean that the codomain of the fold is a
simple data type, not a function or a tuple.

Definition 9 (Primitive Recursion) The unary primitive
recursive operator over the type T s PIT(f), and s defined
by the following set of recursive equations:

Pr’(f)o C: = fio El (idy, ..., idp. (id, Pr" ()))

for every constructor C; of T. Where (f.g)z = (f z.g ).

For example, the list primitive recursive operator is de-
fined as:

Pr'*** (fa, fo) Nil = fn()
Pris! (fn, fo) Cons(a, ) = fo(a, (I Pr'*** (fn, fo) 1))

The promotion theorem for primitive recursion is slightly
more complex than the one for fold as there is a relation-
ship between the variables and their recursively transformed
copies, both of which appear in the output of
El(idy,. ... idy, (id, Pri(f))) [T, 6].

Theorem 4 (Primitive Recursion Promotion)

Yi: ¢;0 Ef (ida,...,1dp, (id, g o PrT(f)))

go foo EL(idy.....id,, (id, P (])))

goPr'(f) = Pr'(¢)

Proof: Similar to Theorem 1. O
For example, the promotion theorem for T = list is:

énl) 9(f())
dela, (Lg(Pr"*"(fn. f) 1)) = g(fela. (LPr"'(fn, fe) 1))

g(PrllSt(fme) z) = Prl“f((;an,qbc) z

The promotion theorem justifies a normalization algorithm
for primitive recursions as well. To see this, consider gener-
alizing the term (Pr'**(f,, f.) ) to the variable r. Thus:

¢n() 9(fx())

Pela, (Lg(r))) = g(fe(a. (1))
g(PI‘“St(frufc) .’E) — PI11St(¢n7¢c) T

This theorem resembles the promotion theorem for folds and

can be used to extend the normalization algorithm from
folds to primitive recursions in a seamless manner.

7 Second-order Folds

Some common computations are not amenable to normaliza-
tion since they traverse accumulative result variables. Recall
the reverse example from Section 5.1:

rev(z) = fold"***(A().Nil, A(a, r).append(r, Cons(a, Nil))) z

where appendis a fold which traverses the accumulative re-
sult variable r. Many such functions can be equivalently
expressed by functions which use an extra parameter which
acts as an accumulator or a continuation [17]. Such func-
tions can be expressed as second-order folds (so called since
the accumulating functions return functions as results). These
second-order fold computations are often normalizable al-
though their equivalent first-order computation is not. For
example, the iterative version of the list reverse is rev(z) =
itrev(z, Nil), where ¢trevis computed by:

itrev Nil w = w
itrev (Cons(a,{)) w = itrev ! (Cons(a, w))



The second-order fold form of this iterative computation is:

rev(z) = fold"**(A().Aw.w. A(a, r).Aw.r(Cons(a, w))) z Nil
We will see that this form is amenable to normalization.

In this section we describe how such fold computations
can be recognized and automatically transformed into their
second-order counterparts, which can then be normalized.

Definition 10 (A-function) A binary function G is an A-
function if it s associative with right identity Ig, that s
G(a.6(b.0)) = G(G(a.b).c) and  G(a.To) = a
Such functions are not uncommon. In fact every type T
which has a zero comstructor, C. (a constructor with no
arguments, like Nil for list), has a zero replacement function
that is associative, and that has the zero, C,, for both a

left and right identity [11]. The zero replacement for 7T is
defined by:

(ZtTy)oC. = )y
(ZxTy)o Ci = CioEl(idy. ... idy. Zx7 y)

We call (ZI‘T y ) a zero replacement, since it replaces all
zeros in z with y. Note that any zero replacement function
G(z,y) = (ZI‘T yz) can be expressed as a fold over z. Rec-
ognize that Zr'** is the list append operator, and that Zr'"
is integer addition.

Definition 11 (G-term) Let G be an A-function and 7 a
set of accumulative result variables. A term in our term
language is a G-term for the set 7 if it can be expressed
using the following rules. 1) An accumulative result variable
from T is a G-term. 2) A term that does not contain any
accumulative result variables from T is a G-term. 3) If t and
t' are G-terms then the expression g(t,t') is a G-term.

Definition 12 (G-fold) A fold fold” () is a G-fold if each
accumulating function fi(Z7) that introduces the accumula-
tive result variables 77 (i.e. 77 is a subset of T; ) can be ex-
pressed as a G-term for the set 7.

For example, the reverse function rev computed by:
foldl“t()\().Nil, A(a, r).append(r, Cons(a, Nil))) z

is a G-fold for G = append.

It is a simple matter to syntactically recognize G-fold
programs whose accumulating functions are expressed us-
ing zero replacement functions. In the following examples
we will use only zero replacement functions for G, but the
analysis is valid for any associative function G with a right
identity Zg.

Definition 13 (Fg-transformation) For each A-function
G the Fg-transformation over G-terms is defined as follows:

Fg(r)

Tg(v)
fg(g(t, t/))

for accum. result var.
for value
) otherwise

Aw.r(w)
)\‘w.g(v,w)
fg(t) 0 fg(tl

This transformation is similar to CPS transformation that
transforms a program in direct style into a program in con-
tinuation passing style. Here, instead of a continuation func-
tion we use an accumulation value.

Theorem 5 Let fold” (f) be a G-fold and Vi : 6
then

= fg o] f,'
fold” (f)z = fold” (¢)z Zg
Proof: It can be proved by induction that for any z and w:
fold” (¢) zw = G(fold” (f) z, w)

from which the theorem follows. O

For example, the following non-potentially normalizable
first-order fold functions can be transformed to potentially
normalizable second-order functions:

rev(z)
= fold"“*(X().Nil, A(a, r).append(r, Cons(a, Nil))) z
= fold"**(A\().Aw.append (Nil, w),
A(a, 7). Aw.r(append (Cons(a, Nil), w))) z Nil
= fold"**(A\().Aw.w, A(a, ). Aw.r(Cons(a, w))) z Nil
flat(z)
= fold*"**(A(z).Cons(3, Nil), A({, ).append (I, 7)) =
= fold*"**(A(1).Aw. append((,ons( . Nil), w),
Al r) Awd(r(w))) z Nil
= fold"**(A(s ) Aw.Cons(i, w), A(l, ). Aw.l(r(w))) z Nil

add_tips(z)
= fold*"**(A(2).3, A({, 7).plus(l, 7)) =
= fold™**(A(2). Aw.plus(i, w), A, ). Aw(r(w))) z Zero
In the following theorem we consider folds consisting of
sums-of-products types where the recursive type, T, does
not appear as a parameter to some other parametric type.
That is, we do not consider types such as bush. In addi-
tion, we simplify the notation of this theorem by assuming
that accumulative result variables r; are separated from the
others a;, such as in fi(@,T).

Theorem 6 (Second-order Promotion Theorem)
Vi /\J(T]Og = gOSJ) = ¢1(E,?)Og = gofz(E,E)
go (fold”(F)z) = (fold” (§)z)og

We will prove this theorem only for the special case of list
second-order folds. For other types the proof is similar.

¢n()og = gof"()
rog = gos A ¢ela,r)og = go fe(a,s)
g0 (fold"*(fn. fo) ) = (fold"**(6,,62)7) 0 g

Proof: Base case z = Nil:

g0 (fold"**( £y, f.) Nil)

()

t(qﬁn ¢c)Nil) o
Induction hypothesis:
g0 (fold"** (£, ) 1) = (fold"**(¢. 6c) 1) 0 9.

Induction step z = Cons(a, {):
g o (fold"“*!( £, f.) Cons(a, 1)) g 0 fela, fold"**(fn, fo) 1)
dcla,r)oyg

g0 fn
On() 0
( dlz

where rog gos

g 0 (old"**(fa, fo) 1)
= (fold"*(¢n. 6c) 1) o g

= 7 = fold"**(¢n, de) .

Therefore, ¢o(a,7)0g = ¢e(a,fold (¢, ) 1) oy
= (fold"**(¢,, é.) Cons(a,1)) 0 g.0

Tf fold” () is a second-order fold then each accumulating
function can be expressed as fi(Z) = Aw.e(w). We call w an
accumulating stack variable.



We have developed an extension to the normalization al-
gorithm, based on the second-order promotion theorem, that
normalizes second-order folds which contain no folds over
accumulative result or accumulating stack variables. This
allows the relaxation of the definition of potentially normal-
izable by allowing folds whose accumulating functions are
themselves folds over accumulating result variables, if each
such accumulating function is expressed using the same G
function, because we can always apply the Fg-transform and
then apply the extended normalization algorithm.

The following is a sketch of the extended normalization
algorithm: When any expression ¢ (that may or may not be
a potentially normalizable first-order fol 5) is applied to a po-
tentially normalizable second-order fold”, the second-order
promotion theorem is used to push g into cach accumulating
function of that fold. In this process, a subterm g(s(...)) is
normalized by rewriting it to r(g(...)), where s and r are
accumulative result variables given in the second-order pro-
motion theorem. The process stops when g is applied to a
variable. In that case, g is generalized away and the premise
of the promotion theorem is used to derive the new accumu-
lating functions.

For example, length(rev(z)) is:

length (fold"**(A(). Aw.w, A(a, ). Aw.r(Cons(a, w))) « Nil)

which according to the promotion theorem can be computed
by some:

fold"** (¢, é.) z (length (Nil))

We apply the promotion theorem:

¢n() olength = length o fn()
= length o (Aw.w) =

= dn() = Aww
Assuming r o length = length o s then
dc(a,r) olength = length o f(a, s)
length o (Aw.s(Cons(a, w)))
= Aw.length(s(Cons(a, w)))
Aw.r(length(Cons(a, w)))

= Aw.r(Succ(length(w)))

= (Aw.r(Succ(w))) o length
= dela,r) = Aw.r(Succ(w))

Therefore, length(rev(z)) is:
fold"**(A().Aw.w, A(a, r). Aw.r(Succ(w))) « Zero

= fold"**(¢n, ¢.)  Zero

length

There are cases where the application of a second-order
fold to a second-order fold normalizes to a second-order fold
that traverses the accumulating stack variable w. In that
case it is necessary to apply the inverse transformation of Fg
to get a first-order fold from the resulting second-order fold.
This is analogous to the DS transformation that translates
a program in continuation passing style into a program in
direct style.

Definition 14 (Inverse Fg-transformation) The inverse

Fg-transformation ]—51 for a second-order fold foldT(g) 8
defined by the following rules:

F3 Qw.w) = Is

FQw.r(t)) = G(r é (Aw.1))
Fg (Aw.G(v. 1)) = G(v. Fd' (Aw.t))
FPQwr(G(w, ) = GFS (w.t).r)

5Note that the application of any function to a potentially im-
provable first-order fold, such as reverse(append(z,y)). can always
be normalized by the first-order promotion theorem.

where v is an accumulative result variable of fold” (4) (i.e.
a variable bound to a function) and v is a value that does
not depend on any such accumulative result variable.

The first three rules define the inverse of G-transformation,
that is, Fg' o Fg = id. The last rule is the most important
one because it transforms a fold over w (if G(w,t) is a zero
replacement function) into a fold over ¢. It can be proved
that if f; = F5' o ¢; then fold” (¢) z Ig = fold”(f) =

For example,
rev(rev(z)) = fold"**(¢n, ¢.) z rev(Nil)

We apply the promotion theorem:

¢n() orev = revo (Aw.w) = rev
= dn() = Aw.w
If we assume r orev = rev o s then

¢c(a,r)orev = revo fe(a,s)
= rev o (Aw.s(Cons(a, w)))
= Aw.rev(s(Cons(a, w)))
Aw.r(rev(Cons(a, w)))
= )\w.r(append(rev(w),Cor}s(a,Nil)))
= Aw.r(append(w, Cons(a, Nil)))

= dela,r)

Therefore, rev(rev(z)) is
fold"“**(A().Aw.w, A(a, r).Aw.r(append (w, Cons(a, Nil)))) z Nil
We apply the FZ' transform to get:

fold¥* t( ().Nil, A(a, r).append (Cons(a, Nil), r)) z
= fold"* t( ()-Nil, A(a, r).Cons(a, r)) z

which is the list identity function.

8 Relationship to Other Work

This work is related to Water’s on series expressions [18].
His techniques apply only to linear data structures such as
lists, vectors, and streams, yet his techniques automatically
detect and fuse multiple walks down the same data struc-
ture, unlike some of the more general techniques.

It is also related to Wadler’s work on listlessness, and de-
forestation [14, 15, 8]. Deforestation works on all first order
treeless terms. A treeless term is one which is exactly anal-
ogous to a potentially normalizable term, but is described in
a much different manner due to lack of structure imposed on
such terms. Wadler makes the observation that some inter-
mediate data structures for primitive types, such as integers,
characters, etc. do not really take up space, so he developed
a method to handle such terms, using a technique he calls
blazing.

Chin’s work on fusion [1] extends Wadler’s work on defor-
estation. He generalizes Wadler’s techniques to all first order
programs, not just treeless ones, by recognizing and skipping
over terms to which his techniques do not apply. His work
also applies to higher order programs in general. This is
accomplished by a higher order removal phase, which first
removes some higher order functions from a program. Those
not removed are recognizable and are simply “skipped” over
in the improvement phase. Our normalization algorithm
needs no explicit higher order removal phase.



9 Conclusions

Recursive definitions and higher order functions, as found
in most functional programming languages, provide a pow-
erful mechanism for specifying programs, but they do not
impose much structure on the form of the programs that
may be expressed. By programming with a small, fixed set
of recursion patterns derivable from algebraic type defini-
tions, an orderly structure can be imposed upon functional
programs. This structure can be exploited to facilitate the
proof of program properties, and even to calculate program
transformations.

In this paper we generalized the class of types to which
these techniques are applicable to mutually recursive sums-
of-products with tuples and function types. We described
several useful patterns of recursion (fold. derive, primitive
recursion, and second-order fold in varying levels of detail)
applicable to every type in this class.

In addition, we described the normalization algorithm
which automatically calculates normalized forms for pro-
grams expressed in the fold sub-language. This algorithm,
based upon a generic promotion theorem, is facilitated by
the explicit structure of fold programs rather than using an
analysis phase to search for implicit structure.

We identified generic promotion theorems for each pat-
tern of recursion. It is our hope that these theorems can
be the basis of normalization algorithms for patterns of re-
cursion other than fold. At the moment this is an open
problem.

Other problems remain as well. Many algorithms can be
expressed using several different patterns of recursion. In
a system with normalization algorithms for several patterns
of recursion, it would be useful to know sufficient conditions
for translating such algorithms from one pattern to another.
Thus enabling the improvement of terms, not normalizable
in one pattern, but normalizable in another.
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