
An Optimization Framework
for Map-Reduce Queries

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/mrql/

Work in collaboration with Chengkai Li and Upa Gupta

Data Processing with Map-Reduce (MR)

MR facilitates the parallel execution of ad-hoc, long-running,
large-scale data analysis tasks on a shared-nothing cluster of
commodity computers connected through a high-speed network

hides the details of parallelization, data distribution, fault-tolerance,
and load balancing

Several implementations:

Apache Hadoop, Google Sawzall, Microsoft Dryad, . . .

Used extensively by companies on a very large scale

Yahoo! manages more than 42,000 Hadoop nodes holding 200 PBs
Yahoo!’s biggest cluster: 4,000 nodes
more than 22 organizations are running PB-scale Hadoop clusters

Some higher-level languages that make MR programming easier:

HiveQL, PigLatin, Scope, Dryad/Linq, . . .
Preferred by MR programmers:

Pig is used for over 60% of Yahoo! MR jobs
Hive is used for 90% of Facebook MR jobs

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 2

Alternatives to MR

Compared to a parallel RDB, the MR framework:
is better suited to large-scale data analysis on write-once in-situ data

often used to process data as is

offers better fault tolerance and the ability to operate in heterogeneous
environments

An MR alternative: BSP (Bulk Synchronous Parallel Architecture)

Apache Hama
Pregel for graph processing

still work in progress
supports a more flexible API
needs checkpointing for fault-tolerance

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 3

The MR Programming Framework

Very simple model: need to specify a map and a reduce task

the map task specifies how to process a single key/value pair to
generate a set of intermediate key/value pairs

the reduce task specifies how to merge all intermediate values
associated with the same intermediate key

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 4

An Example with 3 Mappers and 2 Reducers

data
split

0

m

m

m

3 v1

5 v2

3 v3

mapper 0

… …

data
split

1

m

m

m

4 v4

5 v5

2 v6

mapper 1

… …

data
split

2

m

m

m

2 v7

3 v8

3 v9

mapper 2

… …

5 v2 v5

3 v1 v3 v8 v9

…

r

r

2 v6 v7

4 v4

…

r

r

output
1

output
0

reducer 1

reducer 0

m r: map : reduce

partition function: key mod 2group-by key

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 5

Background: MR vs SQL

MR programs are computationally complete

Regular SQL (join, selection, projection, group-by, having, order-by)
can be directly coded using workflows of MR jobs

Example:

select v.A, sum(v.B) from R as v group by v.A

can be coded in MR as:

class Mapper
method map (key, v)

emit(v.A,v);

class Reducer
method reduce (key, values)

int c = 0;
for each v ∈ values do c += v.B;
emit(key,c);

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 6

Background: Reduce-Side Join

Example:

select x.C, y.D
from X as x, Y as y

where x.A=y.B

can be coded in MR as:

class Mapper1
method map (key, x)

emit(x.A,(1,x));

class Mapper2
method map (key, y)

emit(y.B,(2,y));

class Reducer
method reduce (key, values)

for each (1, x) ∈ values
for each (2, y) ∈ values

emit(key,(x.C,y.D));

Mapper2

Mapper1

Reducer
X

Y

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 7

Motivation

Although the MR model is simple, it is hard to develop, optimize, and
maintain non-trivial MR applications coded in a general-purpose
programming language.
To achieve good performance one needs to

tune many configuration parameters

use custom serializers, comparators, and partitioners

use special optimization techniques, such as in-mapper combining and
in-reducer streaming

Program optimization would be more effective if the programs were
written in a higher-level query language that hides the implementation
details and is amenable to optimization

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 8

Related Work

Many higher-level languages:

HiveQL, PigLatin, PACT/Nephele, SCOPE, Dryad/Linq,. . .

HadoopDB: a hybrid scheme between MR and parallel databases

Manimal : analyzes the MR code to find opportunities for using
B+-tree indexes, projections, and data compression

Asterix : a scalable platform to store, manage, and analyze large
volumes of semistructured data

uses its own distributed data store, Hyracks

YSmart: intra-query optimization by factoring out correlated
operations

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 9

Goal

Build a query processing system that translates SQL-like data analysis
queries to efficient MR jobs

HDFS as the physical storage layer
no indexing, no data partitioning/clustering
no normalization
no data statistics

Hadoop as the run-time engine
no extensions

In the future, we may relax some of these restrictions

But, if we use SQL and completely hide the MR layer, why don’t we just
use a parallel RDB?

MR is already used extensively; we can’t change this

a good query processor may simplify and improve the way
programmers develop data analysis applications and will make MR
computing friendlier to non-expert programmers

MR is actually good!

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 10

Goal

Build a query processing system that translates SQL-like data analysis
queries to efficient MR jobs

HDFS as the physical storage layer
no indexing, no data partitioning/clustering
no normalization
no data statistics

Hadoop as the run-time engine
no extensions

In the future, we may relax some of these restrictions

But, if we use SQL and completely hide the MR layer, why don’t we just
use a parallel RDB?

MR is already used extensively; we can’t change this

a good query processor may simplify and improve the way
programmers develop data analysis applications and will make MR
computing friendlier to non-expert programmers

MR is actually good!

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 11

What is Wrong with Existing MR Query Languages?

Two major problems (to be justified next):

1 Current MR query languages have limited expressive power, forcing
users to plug-in custom MR scripts into their queries

may result to suboptimal, error-prone, and hard-to-maintain code

2 Current MR query processors apply traditional relational query
optimization techniques that may be suboptimal in a MR environment

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 12

MR-Completeness

A MR job over a relation R groups the tuples of R using the map function
m and then applies the reduce function r to each group:

select k, r(group-values)
from R as v
group by k: m(v)

Current MR SQL-like query languages do not allow m and r to be nested
queries and do not support access to the entire group, group-values, other
than performing simple aggregations over the group elements.

Example: calculate one step of the k-means clustering algorithm by
deriving k new centroids from the old

select avg(s.X) as X, avg(s.Y) as Y, avg(s.Z) as Z
from Points as s
group by (select * from Centroids as c order by distance(c,s))[0]

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 13

How can we Reach MR-Completeness?

A MR query language must

allow nested queries and UDFs at any level and at any place

provided that UDFs are pure (no side effects)

allow to operate on all the grouped data using queries

as is done for ODMG OQL and XQuery

support custom aggregations/reductions using UDFs

provided that they are pure, associative, and commutative

support recursion or transitive closure declaratively

to capture graph algorithms, such as PageRank

support hierarchical data and nested collections uniformly

allowing us to query JSON and XML data

support custom parsing and custom data fragmentation

given that MR does not support nested data parallelism

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 14

What is Wrong with Existing MR Query Languages?

Two major problems:
1 Current MR query languages have limited expressive power, forcing

users to plug-in custom MR scripts into their queries

may result to suboptimal, error-prone, and hard-to-maintain code

2 Current MR query processors apply traditional relational query
optimization techniques that may be suboptimal in a MR environment

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 15

What is Wrong with Existing MR Query Languages?

Two major problems:

1 Current MR query languages have limited expressive power, forcing
users to plug-in custom MR scripts into their queries

may result to suboptimal, error-prone, and hard-to-maintain code

2 Current MR query processors apply traditional relational query
optimization techniques that may be suboptimal in a MR environment

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 16

Can we Optimize MR Queries Using RDB Technology?

Example from TPCH:

select c.CUSTKEY, c.NAME, avg(o.TOTALPRICE)
from Orders as o, Customer as c

where o.CUSTKEY=c.CUSTKEY
group by c.CUSTKEY, c.NAME

Hive evaluates this query using a join followed by a MR job (for the
group-by), a total of 2 MR jobs

This query can also be evaluated using just one reduce-side join

the set of orders fed to the reducer contains complete groups, which
are ready for aggregation

This is true for all queries whose join attributes are also group-by attributes

Can we patch a relational system to generate this join/group-by plan?

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 17

Can we Patch an RDB to Generate Combined
Join/Group-By Operations?

By definition, a relational operation must return flat tuples

⇒ A group-by must always be combined with aggregation within the
same operator

Consider nested queries (which are important for MR-completeness).
For simple correlated queries, such as

select f(select h(x,y) (where f and h denote some code)
from Y as y where x.A=y.B)

from X as x

it is not inconceivable that an RDB optimizer could be patched to generate
a reduce-side join that incorporates the group-by at the reduce stage

... but

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 18

Can we Patch an RDB ...?

But what about this double-nested query:

select f(select g(select h(x,y,z) from Z as z where z.C=y.D)
from Y as y where x.A=y.B)

from X as x

One good plan is to use two reduce-side joins (2 MR jobs only):

1 a join between X and Y that emits a nested set of pairs (x,ys):
for each x, the set ys contains all the matching values y

2 a join between the result and Z, which computes the final query result
at the reduce stage

The reducer of the 2nd join receives two sets (mixed) from the two inputs:
the set XY from the first join, which is the nested set (x , ys), and the set
Zs of z tuples, and evaluates in memory:

select f(select g(select h(x , y , z) from z ∈ Zs)
from y ∈ ys) (pseudo-SQL)

from (x , ys) ∈ XY

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 19

Can we Patch an RDB ...?

The reduce-side join plan again:

1 a join between X and Y that emits a nested set of pairs (x,ys):
for each x, ys contains all the matching values y

2 a join between the result and Z, which computes the final query result
at the reduce stage

It is impossible to capture the first join as a purely relational operator

⇒ need nested relations!

Side note:

Some MR query languages use outer-joins with group-bys to simulate
nested queries

Bad idea!

may miss opportunities of using a combined join/group-by

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 20

MRQL: the Map-Reduce Query Language
Oh great, yet another query language!

The MRQL syntax has been influenced by some functional query
languages, such as ODMG OQL and XQuery

The MRQL semantics is based on list comprehensions with group-by
and order-by

It is implemented in Java on top of Hadoop

Allows arbitrary query nesting, UDFs, custom aggregations, and
custom parsers

Can operate on complex data, such as nested collections and trees
Can process:

record-oriented text documents that contain basic values separated by
user-defined delimiters
XML and JSON documents
binary encoded documents

Note: This work is about optimizing MR queries. It can apply to
other suitable languages, such as OQL and XQuery

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 21

The MRQL Physical Operations: The MR Operation

A MR job:

MapReduce(m, r)S

transforms a data set S of type {α} into a data set of type {β} using a
map function m and a reduce function r with types:

m: α→ { (κ, γ) }
r : (κ, {γ}) → {β}

Semantics:

MapReduce(m, r)S = concatMap(r) (groupBy(concatMap(m)S))

where:

concatMap(f) : {α} → {β}, given that f : α→ {β}
groupBy : {(κ, α)} → {(κ, {α})}

concatMap generalizes π, σ, and µ

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 22

MRQL is MR-Complete

Any

MapReduce(m, r)S

can be expressed in MRQL as:

select w
from z in (select r (key,y)

from x in S ,
(k,y) in m(x)

group by key: k),
w in z

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 23

The MRQL Physical Operations: The Reduce-Side Join

The reduce-side join

ReduceSideJoin(mx ,my , r) (X ,Y)

joins the data set X of type {α} with the data set Y of type {β} to form
a data set of type {γ}, where

mx : α→ { (κ, α′) }
my : β → { (κ, β′) }
r : ({α′}, {β′}) → {γ}

The mappers mx and my calculate the join keys κ and the reducer r
combines the tuples from X and Y that correspond to the same join key

Its semantics is given in terms of concatMap, groupBy, and union

Other join implementations: MapJoin (1 map job), MapJoinReduce (1 MR
job), and BlockNestedLoop (1 map job)

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 24

The MRQL Query Algebra

Most important algebraic operators: concatMap, groupBy, union, and join

The MRQL join is a restricted version of ReduceSideJoin. It joins the bag X
of type {α} with the bag Y of type {β} to form a bag of type {γ}:

join(kx , ky , r) (X ,Y)

where

kx : α→ κ
ky : β → κ
r : ({α}, {β}) → {γ}

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 25

Algebraic Optimization

Some optimizations:

Fusing a join with a group-by if the group-by key is the same as the
join key:

join(π1, ky , r) (groupBy(X), Y)

= join(π1, ky , λ(xs, ys).r(groupBy(xs), ys)) (X , Y)

where π1(x , y) = x

Converting a self-join into a simple MapReduce operation that
operates over the input data set once:

join(kx , ky , r) (X , X)

= MapReduce(λx .{(kx(x), (1, x)), (ky (x), (2, x))},
λ(k, s). r(select x from (1, x) ∈ s,

select x from (2, x) ∈ s)) X

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 26

Example: The PageRank Algorithm

A web graph is represented as a set of links, where each link has a source,
a destination, the total number of its outgoing links, and its current
PageRank

One step of the PageRank algorithm derives a new set of edges from the
old set, changing only their rank:

select m.source, m.dest, m.count, c.rank
from (select n.dest , sum(n.rank/n.count) as rank

from Graph as n
group by n.dest) as c,

Graph as m
where m.source = c.dest

(SQL query)

Needs just 1 MR job:

fuse the join with the group-by ⇒ a self-join over Graph

convert the self-join to a single MR job

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 27

The Complete PageRank in MRQL

graph = select (key, n.to)
from n in source(line,“graph.csv”,...)
group by key: n.id; preprocessing: 1 MR job

size = count(graph);

select (x.id, x.rank)
from x in

(repeat nodes = select < id: key, rank: 1.0/size, adjacent: al >
from (key,al) in graph init step: 1 MR job

step select (< id: m.id, rank: n.rank, adjacent: m.adjacent >,
abs((n.rank-m.rank)/m.rank) > 0.1)

from n in (select < id: key, rank: 0.25/size+0.85*sum(c.rank) >
from c in (select < id: a, rank: n.rank/count(n.adjacent) >

from n in nodes, a in n.adjacent)
group by key: c.id),

m in nodes
where n.id = m.id) repeat step: 1 MR job

order by x.rank desc; postprocessing: 1 MR job

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 28

Query Optimization

The MRQL Query Optimizer

uses a novel cost-based optimization framework to map algebraic
forms to efficient workflows of physical plan operators

uses a polynomial heuristic algorithm for query graph reduction

handles deeply nested queries, of any form and at any nesting level,
and converts them to near-optimal join plans

handles dependent joins (used for nested collections and XML data)

Our cost model is currently incomplete
We plan to develop an adaptive optimization system to

incrementally reduce the query graph at run-time

extend the reduce stage of a map-reduce operation to generate
enough statistics to decide about the next graph reduction step

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 29

How does MRQL Compare with Hive?

For simple join/group-by queries:

they are about the same

For queries that need optimization, such as fusing joins with
group-bys, self-joins etc:

MRQL is a clear winner

For complex/nested queries, nested data, complex aggregations:

no competition

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 30

Performance Evaluation

PageRank evaluation over DBLP (865MB XML) and the Hungarian Web
(734MBs, 500K nodes 14M links)
Setup: 8 nodes/32 cores

 0

 5

 10

 15

 20

T
ot

al
 T

im
e

(m
in

ut
es

)

(B) PageRank over DBLP data with/without optimization
8 6 4 (nodes)

opt
no-opt

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
ot

al
 T

im
e

(m
in

ut
es

)

(C) PageRank over the Hungarian Web with/without optimization
8 6 4 (nodes)

opt
no-opt

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 31

Future Work

Develop a comprehensive cost model

Self-tuning

Want to query both raw data and structured data, such as RDBs and
key/value indexes, in the same query language

Want to capture scientific data & computations
need to introduce the concept of data neighborhood

need to be able to access ‘adjacent’ data (eg, for data smoothing)

Want to define complex custom parsers declaratively

need to go beyond Regular Expressions to capture LALR grammars

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/ 32

