An Optimization Framework for Map-Reduce Queries

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/mrql/

Work in collaboration with Chengkai Li and Upa Gupta
Data Processing with Map-Reduce (MR)

- MR facilitates the parallel execution of ad-hoc, long-running, large-scale data analysis tasks on a shared-nothing cluster of commodity computers connected through a high-speed network. It hides the details of parallelization, data distribution, fault-tolerance, and load balancing.

- Several implementations:
 - Apache Hadoop, Google Sawzall, Microsoft Dryad, ...

- Used extensively by companies on a very large scale:
 - Yahoo! manages more than 42,000 Hadoop nodes holding 200 PBs
 - Yahoo!'s biggest cluster: 4,000 nodes
 - More than 22 organizations are running PB-scale Hadoop clusters

- Some higher-level languages that make MR programming easier:
 - HiveQL, PigLatin, Scope, Dryad/Linq, ...

- Preferred by MR programmers:
 - Pig is used for over 60% of Yahoo! MR jobs
 - Hive is used for 90% of Facebook MR jobs
Alternatives to MR

- Compared to a parallel RDB, the MR framework:
 - is better suited to large-scale data analysis on write-once in-situ data
 - often used to process data as is
 - offers better fault tolerance and the ability to operate in heterogeneous environments
- An MR alternative: BSP (Bulk Synchronous Parallel Architecture)
 - Apache Hama
 - Pregel for graph processing
 - still work in progress
 - supports a more flexible API
 - needs checkpointing for fault-tolerance

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/
The MR Programming Framework

Very simple model: need to specify a map and a reduce task

- the map task specifies how to process a single key/value pair to generate a set of intermediate key/value pairs
- the reduce task specifies how to merge all intermediate values associated with the same intermediate key
An Example with 3 Mappers and 2 Reducers

mapper 0

mapper 1

mapper 2

data split 0

m m m 3 v1
m m m 5 v2
m m m 3 v3

mapper 0

mapper 1

mapper 2

data split 1

m m m 4 v4
m m m 5 v5
m m m 2 v6

mapper 0

mapper 1

mapper 2

data split 2

m m m 2 v7
m m m 3 v8
m m m 3 v9

mapper 0

mapper 1

mapper 2

data split 0

m m m 3 v1
m m m 5 v2
m m m 3 v3

mapper 0

mapper 1

mapper 2

data split 1

m m m 4 v4
m m m 5 v5
m m m 2 v6

mapper 0

mapper 1

mapper 2

data split 2

m m m 2 v7
m m m 3 v8
m m m 3 v9

mapper 0

mapper 1

mapper 2

output 0

output 1

reducer 0

reducer 1

reducer 0

reducer 1

output 0

output 1

m : map r : reduce

group-by key

partition function: key mod 2

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/
Background: MR vs SQL

- MR programs are computationally complete
- Regular SQL (join, selection, projection, group-by, having, order-by) can be directly coded using workflows of MR jobs

Example:

```
select v.A, sum(v.B) from R as v group by v.A
```

can be coded in MR as:

```
class Mapper
  method map ( key, v )
    emit(v.A,v);

class Reducer
  method reduce ( key, values )
    int c = 0;
    for each v ∈ values do c += v.B;
    emit(key,c);
```
Background: Reduce-Side Join

Example:

\[
\begin{align*}
\text{select} & \ x.C, y.D \\
\text{from} & \ X \text{ as } x, Y \text{ as } y \\
\text{where} & \ x.A = y.B
\end{align*}
\]

can be coded in MR as:

```java
class Mapper1
    method map ( key, x )
        emit(x.A,(1,x));

class Mapper2
    method map ( key, y )
        emit(y.B,(2,y));

class Reducer
    method reduce ( key, values )
        for each (1, x) ∈ values
            for each (2, y) ∈ values
                emit(key,(x.C,y.D));
```

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/
Motivation

Although the MR model is simple, it is hard to develop, optimize, and maintain non-trivial MR applications coded in a general-purpose programming language. To achieve good performance one needs to:

- tune many configuration parameters
- use custom serializers, comparators, and partitioners
- use special optimization techniques, such as in-mapper combining and in-reducer streaming

Program optimization would be more effective if the programs were written in a higher-level query language that hides the implementation details and is amenable to optimization.
Many higher-level languages:
HiveQL, PigLatin, PACT/Nephele, SCOPE, Dryad/Linq,…

HadoopDB: a hybrid scheme between MR and parallel databases

Manimal: analyzes the MR code to find opportunities for using B^+-tree indexes, projections, and data compression

Asterix: a scalable platform to store, manage, and analyze large volumes of semistructured data
 uses its own distributed data store, Hyracks

YSmart: intra-query optimization by factoring out correlated operations
Goal

Build a query processing system that translates SQL-like data analysis queries to efficient MR jobs

- HDFS as the physical storage layer
 - no indexing, no data partitioning/clustering
 - no normalization
 - no data statistics
- Hadoop as the run-time engine
 - no extensions

In the future, we may relax some of these restrictions
Goal

Build a query processing system that translates SQL-like data analysis queries to efficient MR jobs

- HDFS as the physical storage layer
 - no indexing, no data partitioning/clustering
 - no normalization
 - no data statistics
- Hadoop as the run-time engine
 - no extensions

In the future, we may relax some of these restrictions

But, if we use SQL and completely hide the MR layer, why don’t we just use a parallel RDB?

- MR is already used extensively; we can’t change this
- a good query processor may simplify and improve the way programmers develop data analysis applications and will make MR computing friendlier to non-expert programmers
- MR is actually good!
What is Wrong with Existing MR Query Languages?

Two major problems (to be justified next):

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries. This may result to suboptimal, error-prone, and hard-to-maintain code.

2. Current MR query processors apply traditional relational query optimization techniques that may be suboptimal in a MR environment.
A MR job over a relation \(R \) groups the tuples of \(R \) using the map function \(m \) and then applies the reduce function \(r \) to each group:

```sql
select k, r(group-values)
from R as v
group by k: m(v)
```

Current MR SQL-like query languages do not allow \(m \) and \(r \) to be nested queries and do not support access to the entire group, \textit{group-values}, other than performing simple aggregations over the group elements.

Example: calculate one step of the k-means clustering algorithm by deriving \(k \) new centroids from the old

```sql
select avg(s.X) as X, avg(s.Y) as Y, avg(s.Z) as Z
from Points as s
group by (select * from Centroids as c order by distance(c,s))[0]
```
How can we Reach MR-Completeness?

A MR query language must
- allow nested queries and UDFs at any level and at any place
 provided that UDFs are pure (no side effects)
- allow to operate on all the grouped data using queries
 as is done for ODMG OQL and XQuery
- support custom aggregations/reductions using UDFs
 provided that they are pure, associative, and commutative
- support recursion or transitive closure declaratively
 to capture graph algorithms, such as PageRank
- support hierarchical data and nested collections uniformly
 allowing us to query JSON and XML data
- support custom parsing and custom data fragmentation
 given that MR does not support nested data parallelism
What is Wrong with Existing MR Query Languages?

Two major problems:

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries. This may result in suboptimal, error-prone, and hard-to-maintain code.

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/
What is Wrong with Existing MR Query Languages?

Two major problems:

2. Current MR query processors apply traditional relational query optimization techniques that may be suboptimal in a MR environment.
Example from TPCH:

```sql
select c.CUSTKEY, c.NAME, \textit{avg}(o.TOTALPRICE)
from Orders as o, Customer as c
where o.CUSTKEY = c.CUSTKEY
group by c.CUSTKEY, c.NAME
```

Hive evaluates this query using a join followed by a MR job (for the group-by), a total of 2 MR jobs.

This query can also be evaluated using just one reduce-side join.

the set of orders fed to the reducer contains complete groups, which are ready for aggregation.

This is true for all queries whose join attributes are also group-by attributes.

Can we patch a relational system to generate this join/group-by plan?
By definition, a relational operation must return flat tuples

\[\Rightarrow \] A group-by must always be combined with aggregation within the same operator

Consider nested queries (which are important for MR-completeness).

For simple correlated queries, such as

\[
\begin{align*}
\text{select } & f(\text{select } h(x,y) \\
& \text{ from } Y \text{ as } y \text{ where } x.A = y.B) \\
& \text{ from } X \text{ as } x
\end{align*}
\]

(where \(f \) and \(h \) denote some code)

it is not inconceivable that an RDB optimizer could be patched to generate a reduce-side join that incorporates the group-by at the reduce stage
Can we Patch an RDB ...?

But what about this double-nested query:

```
select f(select g(select h(x,y,z) from Z as z where z.C=y.D)
       from Y as y where x.A=y.B)
from X as x
```

One good plan is to use two reduce-side joins (2 MR jobs only):

1. a join between X and Y that emits a nested set of pairs (x,ys):
 for each x, the set ys contains all the matching values y

2. a join between the result and Z, which computes the final query result
 at the reduce stage

The reducer of the 2nd join receives two sets (mixed) from the two inputs: the set XY from the first join, which is the nested set (x, ys), and the set Zs of z tuples, and evaluates in memory:

```
select f(select g(select h(x, y, z) from z ∈ Zs)
       from y ∈ ys)
from (x, ys) ∈ XY
```
The reduce-side join plan again:

1. A join between X and Y that emits a nested set of pairs \((x, y_s)\):
 - For each \(x\), \(y_s\) contains all the matching values \(y\)
2. A join between the result and Z, which computes the final query result at the reduce stage

It is impossible to capture the first join as a purely relational operator

⇒ need nested relations!

Side note:

- Some MR query languages use outer-joins with group-bys to simulate nested queries
- Bad idea!
 - May miss opportunities of using a combined join/group-by
MRQL: the Map-Reduce Query Language

Oh great, yet another query language!

- The MRQL syntax has been influenced by some functional query languages, such as ODMG OQL and XQuery
- The MRQL semantics is based on list comprehensions with group-by and order-by
- It is implemented in Java on top of Hadoop
- Allows arbitrary query nesting, UDFs, custom aggregations, and custom parsers
- Can operate on complex data, such as nested collections and trees
- Can process:
 - record-oriented text documents that contain basic values separated by user-defined delimiters
 - XML and JSON documents
 - binary encoded documents

Note: This work is about optimizing MR queries. It can apply to other suitable languages, such as OQL and XQuery
A MR job:

\[\text{MapReduce}(m, r) \ S \]

transforms a data set \(S \) of type \(\{\alpha\} \) into a data set of type \(\{\beta\} \) using a map function \(m \) and a reduce function \(r \) with types:

\[
\begin{align*}
m & : \alpha \to \{(\kappa, \gamma)\} \\
r & : (\kappa, \{\gamma\}) \to \{\beta\}
\end{align*}
\]

Semantics:

\[\text{MapReduce}(m, r) \ S = \text{concatMap}(r) \left(\text{groupBy}(\text{concatMap}(m) \ S) \right) \]

where:

\[
\begin{align*}
\text{concatMap}(f) & : \{\alpha\} \to \{\beta\}, \text{ given that } f : \alpha \to \{\beta\} \\
\text{groupBy} & : \{(\kappa, \alpha)\} \to \{(\kappa, \{\alpha\})\}
\end{align*}
\]

concatMap generalizes \(\pi, \sigma, \) and \(\mu \)
MRQL is MR-Complete

Any

\[\text{MapReduce}(m, r) S \]

can be expressed in MRQL as:

\[
\begin{align*}
\text{select} & \quad w \\
\text{from} & \quad z \ \text{in} \ (\text{select} \quad r(\text{key}, \text{y}) \\
& \quad \text{from} \quad x \ \text{in} \ S, \\
& \quad (k, y) \ \text{in} \ m(x) \\
& \quad \text{group by} \quad \text{key: k}), \\
& \quad w \ \text{in} \ z
\end{align*}
\]
The reduce-side join

ReduceSideJoin\((m_x, m_y, r) (X, Y) \)

joins the data set \(X \) of type \(\{\alpha\} \) with the data set \(Y \) of type \(\{\beta\} \) to form a data set of type \(\{\gamma\} \), where

\[
\begin{align*}
m_x &: \alpha \rightarrow \{(\kappa, \alpha')\} \\
m_y &: \beta \rightarrow \{(\kappa, \beta')\} \\
r &: (\{\alpha'\}, \{\beta'\}) \rightarrow \{\gamma\}
\end{align*}
\]

The mappers \(m_x \) and \(m_y \) calculate the join keys \(\kappa \) and the reducer \(r \) combines the tuples from \(X \) and \(Y \) that correspond to the same join key. Its semantics is given in terms of concatMap, groupBy, and union.

Other join implementations: MapJoin (1 map job), MapJoinReduce (1 MR job), and BlockNestedLoop (1 map job)
Most important algebraic operators: concatMap, groupBy, union, and join

The MRQL join is a restricted version of ReduceSideJoin. It joins the bag X of type $\{\alpha\}$ with the bag Y of type $\{\beta\}$ to form a bag of type $\{\gamma\}$:

$$\text{join}(k_x, k_y, r)(X, Y)$$

where

$$
\begin{align*}
k_x & : \alpha \rightarrow \kappa \\
k_y & : \beta \rightarrow \kappa \\
r & : (\{\alpha\}, \{\beta\}) \rightarrow \{\gamma\}
\end{align*}
$$
Algebraic Optimization

Some optimizations:

- Fusing a join with a group-by if the group-by key is the same as the join key:

 \[
 \text{join}(\pi_1, k_y, r) \ (\text{groupBy}(X), Y) \\
 = \text{join}(\pi_1, k_y, \lambda(xs, ys).r(\text{groupBy}(xs), ys)) \ (X, Y)
 \]

 where \(\pi_1(x, y) = x \)

- Converting a self-join into a simple MapReduce operation that operates over the input data set once:

 \[
 \text{join}(k_x, k_y, r) \ (X, X) \\
 = \text{MapReduce}(\lambda x. \{(k_x(x), (1, x)), (k_y(x), (2, x))\}, \\
 \lambda(k, s). r(\text{select } x \text{ from } (1, x) \in s, \\
 \text{select } x \text{ from } (2, x) \in s)) \ X
 \]
Example: The PageRank Algorithm

A web graph is represented as a set of links, where each link has a source, a destination, the total number of its outgoing links, and its current PageRank.

One step of the PageRank algorithm derives a new set of edges from the old set, changing only their rank:

```
SELECT m.source, m.dest, m.count, c.rank
FROM (SELECT n.dest, SUM(n.rank/n.count) AS rank
      FROM Graph AS n
      GROUP BY n.dest) AS c,
       Graph AS m
WHERE m.source = c.dest
```

(SQL query)

Needs just 1 MR job:

- fuse the join with the group-by ⇒ a self-join over Graph
- convert the self-join to a single MR job
The Complete PageRank in MRQL

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init</td>
<td>Preprocessing: 1 MR job</td>
</tr>
<tr>
<td>Step</td>
<td>Repeat step: 1 MR job</td>
</tr>
<tr>
<td>Post</td>
<td>Postprocessing: 1 MR job</td>
</tr>
</tbody>
</table>

```ml
graph = select (key, n.to)
    from n in source(line, "graph.csv", ...)
    group by key: n.id;

size = count(graph);

select (x.id, x.rank)
from x in (repeat
    nodes = select <id: key, rank: 1.0/size, adjacent: al>
        from (key, al) in graph
    init step: 1 MR job

    step select (<id: m.id, rank: n.rank, adjacent: m.adjacent>,
        abs((n.rank-m.rank)/m.rank) > 0.1)
        from n in (select <id: key, rank: 0.25/size+0.85*sum(c.rank) >
            from c in (select <id: a, rank: n.rank/count(n.adjacent) >
                from n in nodes, a in n.adjacent)
            group by key: c.id),
        m in nodes
    where n.id = m.id)

order by x.rank desc;
```
The MRQL Query Optimizer

- uses a novel cost-based optimization framework to map algebraic forms to efficient workflows of physical plan operators
- uses a polynomial heuristic algorithm for query graph reduction
- handles deeply nested queries, of any form and at any nesting level, and converts them to near-optimal join plans
- handles dependent joins (used for nested collections and XML data)

Our cost model is currently incomplete
We plan to develop an adaptive optimization system to

- incrementally reduce the query graph at run-time
- extend the reduce stage of a map-reduce operation to generate enough statistics to decide about the next graph reduction step
How does MRQL Compare with Hive?

- For simple join/group-by queries: they are about the same
- For queries that need optimization, such as fusing joins with group-bys, self-joins etc: MRQL is a clear winner
- For complex/nested queries, nested data, complex aggregations: no competition
Performance Evaluation

PageRank evaluation over DBLP (865MB XML) and the Hungarian Web (734MBs, 500K nodes 14M links)
Setup: 8 nodes/32 cores

![Graph A](B) PageRank over DBLP data with/without optimization

![Graph B](C) PageRank over the Hungarian Web with/without optimization
Future Work

- Develop a comprehensive cost model
- Self-tuning
- Want to query both raw data and structured data, such as RDBs and key/value indexes, in the same query language
- Want to capture scientific data & computations
 - need to introduce the concept of data neighborhood
 - need to be able to access ‘adjacent’ data (e.g., for data smoothing)
- Want to define complex custom parsers declaratively
 - need to go beyond Regular Expressions to capture LALR grammars