Improving Programs which Recurse over
Multiple Inductive Structures

Leonidas Fegaras

Tim Sheard

Tong Zhou

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
20000 N.W. Walker Road P.O. Box 91000
Portland, OR 97291-1000

{fegaras,sheard,tzhou}@cse.ogi.edu

Abstract

This paper considers generic recursion schemes for programs
which recurse over multiple inductive structures simultane-
ously, such as equality, zip and the nth element of a list
function. Such schemes have been notably absent from pre-
vious work. This paper defines a uniform mechanism for
defining such programs and shows that these programs sat-
isfy generic theorems. These theorems are the basis for an
automatic improvement algorithm. This algorithm is an im-
provement over the algorithm presented earlier [14] because,
in addition to inducting over multiple structures, it can be
incorporated into any algebraic language and is no longer
restricted to a “safe” subset.

1 Introduction

In previous work [14, 15, 6, 4, 5] we have shown how pro-
gramming algebraically with generic recursion schemes pro-
vides a theory amenable to program calculation [13]. This
theory provides a basis for automatic optimization tech-
niques which capture many well-known transformations. Un-
fortunately, these recursion schemes may induct over only
one structure at a time, and thus cannot capture in a straight-
forward manner such common functions as structural equal-
ity, zip, or the function that computes the nth element of a
list.

In this paper we first generalize the generic reduction
scheme to induct over any number of structures (not neces-
sarily of the same type) simultaneously. We show that this
induction scheme has a generic promotion theorem, and that
the theorem supports a normalization algorithm that auto-
matically calculates a number of previously unrelated im-
provements to programs, such as deforestation, loop fusion,
and partial evaluation. This is an important step towards
an automatic optimization phase in compilers of algebraic
programs.

Second we extend our earlier work [14, 6] by embedding
our optimizations in a richer language. Our previous work

To appear in ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipula-
tton, Orlando, Florida, June 1994.

focused on a restricted language which has now been ex-
tended to include many features of a modern functional pro-
gramming language.

Third we describe an improved algorithm for comput-
ing our optimizations. The improved algorithm works over
the entire extended language while the original algorithm
worked only on a syntactically identifiable subset of the re-
stricted language. In addition the improved algorithm re-
quires no explicit memoization phase (what we called gen-
eralization in [14, 6].)

1.1 Goals

Recursion is the Goto of functional programming. Lan-
guages which allow arbitrary recursive programs lack the
structure necessary for automatic optimization. Much re-
cent research has focused on the design of programming sys-
tems whose control structures are exclusively some generic
recursion schemes [3, 9, 10]. We call this programming style
algebraic programming because of its reliance on algebras
and combinators for encoding control. Notable absent from
these works are generic recursion schemes for inducting over
multiple structures.

A goal of this paper is to describe internal program rep-
resentations for algebraic programs which are amenable to
completely automatic optimization and transformation meth-
ods, yet are expressive enough to encode algorithms which
induct over multiple structures simultaneously. These pro-
gram representations are suitable for use in the back-end of
a compiler for an algebraic programming language.

A second goal is to describe how ordinary recursive pro-
grams could be translated into this internal form, so that
our techniques could be applied to traditional functional lan-
guages. In this work we do not consider user interfaces to
algebraic programming languages, but rather demonstrate
that algebraic recursion schemes are a practical internal
form for representing programs and describe a single auto-
matic mechanism for performing a wide range of optimiza-
tions over such programs.

1.2 Motivation and Background

Consider for example the following inductive type equation
that captures natural numbers:

nat = Zero | Succ of nat

The reduction over a nat k can be computed by red”**(f., f) k
where f. and f. are functions associated with the value con-
structors Zero and Succ. The combinator red”*(f., f.) is
defined as follows:

red”**(f., f.) Zero = f()
red™**(f., fs) (Succ(n)) fe(red™ (f=, fo)n)

Functions f. and f. are called accumulating functions.
For example:

t+y = red”(A().y, A(r).Succ(r)) =

The variable r in A(r) is the partial result of the reduction,

since it represents the value of the recursive call red"**(£, f.) n.

It is called an accumulative result variable.
The reduction operator can be generalized for most in-
ductively defined data type. One such type is list:
list(a) = Nil | Cons of a x list(a)
where o is a type variable. The reduction for lists is very
similar to the reduction for natural numbers:

red"*¥(f,,, f.) Nil = fal)
red"**(fa. fo) (Cons(a.l)) = fe(a,red"**(fn. f)1)

For example,

length(z) = red™**(A().Zero, A(a, r).Succ(r)) z

For each such inductive data type there is a generic the-
orem called the promotion theorem [12, 13]. For lists this
theorem takes the following form:

9(£2())
g(fc(a7 T))

g(redl“t(fn,fr:) z) = redlfst(¢n7¢c):ﬂ

This states that the application of any unary function ¢ to
a reduction over a list z is another reduction over the same
list £ whose accumulating functions ¢, and ¢. are related
to the original accumulating functions f,, and f. by the two
equations in the premise of the theorem. The first equation
calculates directly a solution for ¢, in terms of g and f,,. The
second equation, though, cannot be solved directly. This
equation must be rearranged so that the term g(r) can be
generalized to a variable in both sides of the equation. That
is, the term g(fc(a,r)) must be transformed into a form
T (g(r)), for some term 7 that depends on g(r) but not on
r. Such work was previously reported in [14, 6, 5, 4] where
this transformation is achieved by the generalization phase
of the normalization algorithm.

As an example, we will improve length(append(z,y)),
where

length(z) = red"**(A().Zero, A(a, r).Succ(r)) =
append(z,y) = red"*(fy, fc)
where . =)\ (a, r) Cons(a, r)

We need to find some red"***(¢,, ¢c)z = length(append(z, y)).
We apply the list promotion theorem with g = length and

red"**(f,, f.) = = append(z, y):

1) () 1(fnt(ﬁ))= length(fn())
eng

g(fela,1) = length(fe(a, 7))
length(Cons(a, r))
Succ(length(r))

(by the length definition)

= ¢c(a,u) = Succ(u)

(where length(r) was generalized to u)

2) ¢cla,length(r))

Therefore, length(append(z,y)) is transformed into:

red'***(A().length(y), A(a, u).Succ(u)) z

Note that length(append(z,y)) generates an intermediate
data structure (a list), since append(z,y) constructs a list
which is consumed by length. This data structure is not
produced when this composition is normalized into the re-
duction above.

Even though the reduction scheme that inducts over one
value (henceforth called a unary reduction) is very power-
ful, there are still some important functions that cannot
be captured directly by this mechanism. One class are bi-
nary functions such as structural equality. For example, the
structural equality over lists is defined as follows:

listeq(Nil, Nil) = True
listeq(Nil, Cons(b, s)) = False
listeq(Cons(a, 1), Nil) = False
listeq(Cons(a, 1), Cons(b, s)) = (a =b) Alisteq(l, s)

Function listeq cannot be expressed directly as a unary re-
duction since it needs to walk through the two input lists si-
multaneously. We can express listeq(z, y) as a second-order
unary reduction though:

red"**(X().Ak.(k = Nil),
Aa,))\k case k of Nil = False
| Cons(b,s) = (a =b)Ar(s))zy
but this form does not facilitate automated optimization.
In particular, this reduction inducts over the first input z
but not over y. The accumulative result variable r is now a
function that “recurses” over the second parameter y. That
is, this program is both inductive and higher-order and relies
on the case expression to decompose y one level at a time,
while the “recursion” inherent in the accumulative result
variable r drives the induction over y. The optimization
techniques described in the next section are applicable only
to the direct object of the fold, z, but not to y. We can
write another similar program where the direct object of
the fold is y and the higher-order value returned by this fold
analyses z. The lack of symmetry in these folds motivates
simultaneous multiple induction schemes.
In this paper we capture functions, such as listeq, using
a new reduction scheme F = redl“txmt(fnn,fnc,fcn,fcc),

defined as follows?:

F(Nil, Nil) = fan(0):0)
F(Nil, Cons(b, s)) = fne((): (b, 5))
(Cons(a 1), Nil) = fenl((a,1),())
F(Cons(a,l),Cons(b,s)) = fec(a, (b, F(L, s)))

1The unintuitive “shape” of the domain of the accumulating func-
tions will be explained later.

In that case, listeq(z, y) is equal to: Definition 1 (The Functor E) For each value construc-
tor C of type t—T (@) we associate a functor ET such that

red"*"XEH(X((), ())- True, ET(f) = K[T(@),4(f.id,....id), where id is the identity
A((), (b, s)).False, functi
unction. The combinator R[T(coesap), tl(fog1. - . gp)
Al(a, D). ())-False, 18 defined by the following inductive equatzons
Ma. (8.1)-(a = b) A1) (2.9)
We call red"***"*** 3 binary reduction because it inducts KT (@), a:](£.9) =
over two data structures simultaneously. K[T(a): ()](f ﬁ) = id
This paper extends the theory of unary reductions to KT (@), ti x :](f.5) = K[I(@),t)(f.9) x K[T(@), t2](f.7)
capture all reduction schemes that induct over any num- P . _ ’ ’
ber of data structures, which need not necessarily be of KT (@). T(@)](f.9) = f
the same type. We will present and prove a very general KT (@),S(t1,....tq)](f.9)
promotion theorem that captures all types of compositions = mapS(K[T(E), t](f, §)7 e IC[T(E), tJ(f, y))
between these general reduction schemes. We will use this
theorem as the basis of a very effective and efficient nor- where the product of two functions g and h is defined by
malization algorithm that improves most programs in our (9 x R)(z,y) = (9=, hy) and map® is a map over the in-
term language. This algorithm eliminates intermediate data ductive type S(a1,...,aq), i.€., it maps the parametric type
structures, which might be generated when reductions are S(ai, ..., aq) into the type S(ﬁ‘lBq). That is, for each
nested, passing intermediate results from one to another. value constructor C of type t—1T (@) we have:
Finally, we demonstrate that the same algorithm that
eliminates intermediate data structures can be adapted to mapT(f) oC = CoK[T a) t](map 7)7)
translate ordinary recursive function definitions into their
reduction-based counterparts. where o is function composition (i.e. (fo g)z = f(g(z))).
This paper is organized as follows. Section 2 reviews For example, the map for list is:
the definition of the unary reduction operator for any in-
ductively defined data type. These combinators are then mapl”t(f) Nil = Nil
generalized in such a way that they can be used for defining mapl”t(f) (Cons(a,l)) = Cons(fa, mapl”t(f) 1)
reductions that induct over multiple data types. Section 3
presents two instances of the promotion theorem, one is for It is easy to prove that E,:T(id) —id and E,:T(fog) — E,:T(f)o
promoting a unary function and the other for promoting a E,:T(g) That is, ET is a functor.
binary function. The promotion theorem in its most general For examplé:
form is presented in Section 5. Section 4 presents the nor-
malization algorithm for the unary and binary case. Finally, Ena(f) = id 200
Section 6 presents an automated method for converting reg- .
ular ML—SI;yle recursive function definitions into algegbraigc Econs(f) = idxf = Ma;s).(a, f(s))
programs. Enoae(f) = dxfxf = Aulr).(f(0). f(r)
Esrancn(f) = map"™'(f) = Al)map"*!(f)1

2 Reductions
Definition 2 (Unary Reduction) The unary reduction op-

The type definitions considered in this paper are the induc- erator over the type T is redT(T) and it is defined by the

tive types defined by using recursive equations of the form: following set of recursive equations, one for each value con-

T(ai,...,ap) = Ciofty | --- | Choft, structor C of T:
where a1,...,a, denote type variables (abbreviated by the redT(T) oC=fco E(;T(IedT(T))
vector @), the C; are names of value constructor functions, _
and each type t; is an inductive subcomponent of type T (@). where variable f is the vector of all accumulating functions
An inductive subcomponent of a type T(@) has one of the fe for each value constructor C of T.

following forms:))
For example, the tree reduction operator is defined as:

a; a type variable in the set a1,...,ap
0O the unit type red*"*(f, fn) (Tip(a)) = fi(a)
t1 X t2 a pair of two inductive subcomponents of 7 (@) red""**(f. fn) (Node(bb, l:gt)r)ee | redire
T(@) the recursive reference to 7 (@) = ful(b.xe (fe: fn) L xe (fe: fn)7)
S(t1,...,tq) where S is a previously defined inductive The bush reduction operator is defined as:
type constructor and each t; is an
inductive subcomponent of T (@) Iedb“h(ﬁ, fb) (Leaf(a)) = fi(a)

red”*" (fi, f») (Branch(l)) fo(map"***(red™ " (fu, fo)) 1)

For example, the following are inductive type definitions:

boolean = False | True
list(a) = Nil | Cons of a x list(a)
tree(a,f) = Tip of a | Node of § x tree(a,) x tree(a, B)
bush(a) = Leafof a | Branch of list(bush(a))

The following are some examples of computations that use
unary reduction operators:

append(z, y) = red"**(A\().y, A(a,7).Cons(a, 7))z
length(z) = red"**(\().Zero, A(a, r).Succ(r)) =
reverse(z) red™**(X().Nil,

A(a, r).append(r, Cons(a, Nil))) z
T4y red”**(A().y, A(r).Succ(r)) =
ifrthenyelsez = 1ed®™(A().z, A().9) z

red”**(A(a).a, A(b,m,n).b+m +n)z
red®*"(\(a).Leaf(a),
Al

r).Branch(reverse(r))) z

sum_tree(z)

reflect_bush(z) =

In order to generalize reduction to capture recursion schemas
that traverse more than one data structure simultaneously,
we need to generalize the functor E.

Definition 3 (Generalized Product Type) A generalized
product type T s either an inductive type T or a pair 71 X T2,
where 71 and T2 are generalized product types.

We use the symbol T for inductive types and 7 for general-
ized product types.

Definition 4 (Generalized Constructor) The set of gen-
eralized constructors GC(7) of a generalized product type T is
defined inductively using list comprehensions:

o (T)
gC(T1 X TQ)

= [C | Cis a value constructor of T]
= [axc [a—d(n) c2— &(n)]
We will use the symbols C, Cy, or Cs for value constructors
and the symbols ¢, c1, or ¢ for generalized constructors.
For example, the generalized constructors for 7(a) =
list (@) X nat are: Nil x Zero, Nil x Succ, Cons x Zero, and
ConsxSucc. The generalized constructors for 7(a) = boolean x
(list () x nat) are False x (Nil x Zero), False x (Nil x Succ),
False x (Cons x Zero), False x (Cons x Succ), True x (Nil x
Zero), True x (Nil x Succ), True x (Cons x Zero), and True x
(Cons x Succ).

Definition 5 (Inductive Constructor) A generalized
constructor ¢ € GC(1) is inductive (denoted as inductive(c))
of either ¢ s the value constructor C of type t—T and type
t (the domain of C) contains a reference to T, or c = ¢1 X ¢z
and both ¢1 and ¢y are inductive constructors.

That is, a generalized constructor ¢ of 7 is not inductive
if the domain of any of its constituent value constructors
C : t—T has no recursive reference to type 7. For example,
Cons x Succ is inductive while Cons X Zero is not.

The following combinators are defined in terms of the F
functor and they are, in a way, generalizations of E:

Definition 6 (The Functor D)

DZ(f) = i if ﬁinductive(c)
DI(f) = EIJ) o
ID::} :2 (f) 'Dzi (ng (f)) if lnductlve(c)

Note that D is a functor since it is a composition of functors.

Definition 7 (The Combinator &)

EI(S) = id if minductive(c)
EXS) = EI(f) if inductive (c)
SZ;:ZE(f) = Mz, 9).E(A2.E2(Aw.f(z,w))y) z

The general intuition behind this definition can be explained
as follows. Let Cy, C>, and f have the typings:

Ci: (axTi(a) xa)—Ti(a)
Cy i (12(P) x B x T2(B)) —12(B)
fo (Tae) x To(

then £cy xc,(f) has type:
(axTi(a)xa)x(12(B)x B x12(B))—

That is, if £, xc, (f) is applied to ((a, z,b), (y1.c,y2)), then
it returns (a,(g(z,y1).c.9(z.y2)),b). This returned tuple
has the same shape as the domain of the first constructor
C1, but any components of type 77 in this tuple are replaced
by tuples that have the same shape as the domain of the
second constructor Co. That is, z in (a,z,b) is replaced
by (y1.c.y2) (since the type of z is 71(a)) and each y; in
(a.(y1.c,y2),b) is replaced by g(z, y:).
For example:

(ax(yxfAx7y)xa)

DN1lezp(f) = id =)‘(()1)(()1)

gNdezp(f) = id =)‘(()1)(()1)

DCOn&XTIP(f) = id =)\((a,s),i).((a,s),i)
gCon&XTlp(f) = id =)\((a,s),i).((a,s),i)
DConstons(f) = Xz, (y T)) (I, (y: f(T)))
Econsxcons(f) = A(z.x3),(y,ys)).(z. (y. f(zs,ys)))
Deonsxsuce(f) = Mz, r).(z, f(r))

(=,
(
(
(
(a;
(
(i

Econsxsucc(f) = AM(z.z8),n).(z, f(zs,n))
Dionsxnoae(f) = Ala, (2, r1,712)).(a, (1, f(r1), f(r2)))
Ecomexnonclf) = M(a.). (i:1.1)).(a (i, £(5.1). S(5.7)
DNodexNoae(f) = A

):
i, (7. r1.72), (k. ra, r4)).(2, (4, f(r1),

f(r)) (k. f(TS) f(”)))

; l

T)
Definition 8 (The Combinator M)

gNodexNode(f) =

MI(f) = id if minductive(c)
./\/(2;(2(]:) = Mz, y). DAz D2 Aw.f(z,w))y)z

if inductive(c)

Note that if 73 and 7 are the simple inductive types 7; and

15 respectively, then MCTII;CT; = E(ilfc?(f).
Properties:
DIGd) = id (1)
Di(fog) = Di(f)oDi(g) (2)
E(foyg) = Di(f)o&llg) (3)

ENTg 0 (F X 1)
— M)

c1 Xco

(o () x E5(R) (4)

Proof: Properties 1 and 2 are true because D is a functor
(since it is a composition of functors). Property 3 is true

for a non-inductive ¢ and for = = 7. We assume that it is
true for 7 = 7 and 7 = 7 (induction hypothesis). Then for
T=171 X T and ¢ = ¢1 X ¢» we have:

Di(f)o&l(g)

= DIi2(f)o 5;1:2(9)
= DHDZ(f)) o (M=, 9).E 1 (Az.E2 (Aw.g(z, w)) y))

(by Deﬁmtlons 6 and 7)
= Mz, y). DE(DER(fINET(A2.E2(Aw.g(z,w)) y))
= Mz, y).EX((DE(f) o (Az.E2(Aw.g(z, w)) y)) z)
(inductlon hypothesis)
= Mz, y).£5 (A2 DE(f) (€2 (Aw.g(z, w)) y) z)
= Mz.y).£5 (A2.E2((f o (Aw.g(z. w)))y) z)
(induction hypothesis)
= Mz,)£ (A2.E22(Aw.f(g(z, w))) y) =
el :Z;’(f 0g) (by Definition 7)
= & (foy)

Property 4 can be proved as follows:

M2 (0) 0 (E21) % €3 ()

= ()\(z,y).DZi()\z.D?(Awg z,w))y)z) o (EX(f
(by Definition 8)

Az, y). DI (Az. D2 (Aw.g(z, w)) (E22(R) y)) (72 (f) %)
(by beta reduction)

Az, y). D} (A2 (Aw.g(z. hw)) y) (£ (f) =)
(by Property 3)

Mz, y).£0 (A6 (Aw.g(f 2, hw))y) z
(by Property 3)

= £7 2 (go(f x h))

(f) x €3 (R))

(by Definition 7) O

We are now ready to define the generalized reduction scheme:

Definition 9 (Reduction)

Yee &(7): red™(floc = foo&l(red™(f))
For example, the following is the definition of the binary

reduction:

redT XTQ(T) o (C1 % Cg) = feyxes © gg;lXXCZQ(ed T1xT2 (f))
where C; and Cy are value constructors of 77 and 7>, re-

spectively.
For example, the binary reduction operator

F — redlut)(hét(fn'n;fnc;fcn;fcc)

is defined as:

F(Nil, Nﬂ) = fnn(()())
F(Nil, Cons(b, s)) = fne((). (b. 5))
F(Cons(a. 1), Ni) = ol). ()
F(Cons(a.1), Cons(b.s)) = feela. (5. (L))

The following are examples of binary reductions:

(0); ())-True, A((),) False,
Az, ()).False, A(r).r) (z,y)

nateq(z,y) = red™*MH(X(

listeq(z,y) = red™ X% (X((), (). True, A((), (b, 5)).False,
a,l).()).False,

)‘(7(b7T))'T A (a = b)) ('T y)

dp(r.y) = red), ()N MO, (b)) Nil
A((a, 1) ())-Nil,
A(a, (b,)).Cons((a, b), 7)) (z, y)
ﬁrstn(fn,z) —

red™* =X ((), ()).Nil, A((), (a, 1)).Nil,
)\(z,().Nil,
A(a, 7).Cons(a, 7)) (n, z)

red" =X (A((), ())-d. A((). 9).d.
a,1),()).a,

nth(d)(z,n) = ()
A((Ala, T) r)(z,n)

3 Promotion Theorems

The general law which applies to all reductions is called the
general promotion theorem. In this section we will present
two special cases of the general promotion theorem, which
are also the most common cases. The promotion theorem is
presented and proved in its general form in Section 5. These
are the unary and the binary promotion theorems (a unary
function composed with one generalized reduction and a bi-
nary function composed with two generalized reductions).

The first promotion theorem is for the case of composing
a unary function g with any n-ary reduction.

Theorem 1 (Unary Promotion Theorem)

Ve e &(1): ¢.0Dl(g) = go fe
gored(f) = red™(¢)
(r

Proof: Let n = g ored”(f) and ¢ € GC(7). Then

gored” (?) oc

= gof.o&l(2 by Definition 9
dc0D(yg)OET(ed” (T)) by premise
b0 EI(gored™(f))

de 0 EL(n)

noc

by Property 3

Thus, by Definition 9, 5 is equal to redT(a). a

If 7 is the simple inductive type 7, then the unary promotion
theorem is identical to the simple promotion theorem for
simple reductions, as it is described in [14].

For example, the unary promotion theorem for the simple

type T = bush(a) is

¢i(a) 9(fi(a))
do(map"“*(g)s) = g(fi(s))

g(I‘edbuSh(fI:fb) l‘) = Iedbush((zﬁl,(bb)z

And the unary promotion theorem for the generalized type

T = list(a) x list(3) is:

Pnn((): () = 9(fan((): ()

Pnc((): (b:s)) = g(fne((): (b, 5)))
Pen((@.1).()) = g(fen((a. 1), ()))
Pec(a; (b.g(r))) = g(fee(a; (b.7)))

(dll ttht(f”lnrfncrfC’nmeC) l‘ y))
= I'edlwtxz“t(ﬁénn:¢nc:¢cn7¢cc) (zy)

The second promotion theorem is for the case of com-
posing a binary function g with any two n-ary reductions.

Theorem 2 (Binary Promotion Theorem)
Vey € GC(11), Ve € GC(12)
Peyxes © MZiiZi g) = g0 fcl X hC?)
go(red™(f) x red™(h)) = 1ed™*"™2(§)
Proof: Let F = red™ (f), H =red™(h), n = go(F x H), and

c1 and ¢z are generalized constructors in GC(71) and GC(m2).

Then

go(F xH)o (e x c2)
o((Focr) x (Hoc))
0 ((fer 0 EL(F)) X (hey 0 £ (H)))
(by Definition 9)
9o (fer X hey) 0 (EL(F) x £22(H))
Perxes 0 MO LT (g) 0 (£33 (F) x £33 (H))
(by premise)
= Geixe; 0EL (g0 (F x H))
(by Property 4)

- ¢C1 Xc2 52—11 :2—22(77)

Thus, by Definition 9, 5 is equal to red™ *™2 (5) a

no(c1 X c2)

For example, for 77 = list(a) and 7> = nat the binary
promotion theorem is:

¢TLZ(()()) = g(f"()hz())
éns(();) = g(fn(). he(5))
Pe ((a,r),()) = g(f,;(a,r),hz())
pes(a.g(r.s)) = g(fe(a.r). he(s))

g(red" < (fn, fo) =, 1ed™ (k. he) y)

dhstxnat(TLZ7¢TLS7¢CZ7¢C£) (zy)

IIV

4 The Normalization Algorithm

In this section we present our program optimization algo-
rithm. It uses the unary and binary promotion theorems
effectively to perform loop fusion. This algorithm, called
the normalization algorithm, is presented in Figure 1. Term
TNV(g) denotes a special intermediate term that should not
appear in the normalized term. To enforce this property, the
first rule raises an exception if the normalization algorithm
encounters such a term. This exception is parameterized
by the reduction currently being promoted by a promotion
theorem. This parameter guarantees that nested promotion
phases will be handled correctly. Normally, ZAMV(g) is can-
celled by g in the elimination phases and no exception is
raised. If an exception is raised, then it is caught by the un-
dergoing promotion phases and no loop fusion is performed.
Otherwise, the promotion theorem is used to fuse the two
nested reductions into one. Note that the binary promo-
tion phase constructs the lambda variables of the new ac-
cumulating function by using variable name concatenation

#(z1, zg) = 1 _x. Variables T in the partial reduction and
the unary promotion, and z7 and Zz in the binary promotion
phase are vectors of new variable names.

For example, the following is an instance of the unary
promotion phase of the normalization algorithm:

Ng(red"*!(fu, fo) 2)] — r1ed"*(4n. ¢c) (N[=])
where
¢n = A)Ng(f20)]
b = Ma,s).N[g(fela, INV(g) 5))]

The following is an instance of the binary promotion phase
of the normalization algorithm:

Ng(xed" (fu. £.) 7.1¢d™* (k.. h.) 9)]
- Iedhstxnat((lﬁnm Gns; Pez, ¢CS) (N[[z]]-/\/[[y]])

where
¢nz = MO 0)-Ng(f20): R=())]
$ne = MO, s)-Ng(fn(). he(s))]
¢z = AM(a.7). () N[g(fe(a. 7). h=())]
bes = Aa,ros). Ng(fela, TNV (g Jr).h I/\/V(g) s))]

To prove that the normalization algorithm always termi-
nates, we map any term in our language to the maximum
number of nested reductions in the term. That is, for ev-
ery path in the abstract syntax tree that represents a term
we compute the number of reductions in the path and then
we take the maximum of all these numbers. It is easy to
prove that any recursive call to the normalization algorithm
does not increase this number, except in the combinator re-
duction rule. But this rule is applied whenever we have a
construction. Since all constructions are finite, this rule al-
ways terminates. The only case where the number of nested
reductions may remain the same is during the pair, the ab-
straction, and the beta reduction rules. But these rules al-
ways terminate according to the lambda calculus theory.

It is not easy, though, to prove the correctness of the nor-
malization algorithm. In general, we need to define formally
the meaning function that maps terms into values and prove
that the normalization algorithm always preserves meaning.
The only mechanisms we have to prove this are the pro-
motion theorems. We will not present the detailed proof
here. Instead we will present a sketch of the proof. The
detailed correctness proof for the normalization algorithm
which includes only the simple promotion theorem can be
found elsewhere [15].

Theorem 3 (Correctness of Normalization) The nor-
malization algorithm always preserves the meaning of a term.

Proof sketch: All the transformation rules of the normaliza-
tion algorithm can be easily proved to preserve the meaning
of a term, except for the two promotion laws. We consider
the unary promotion phase first. There are two cases for
the computation of the new accumulating functions ¢.: if
any of the computations Ng(f.(PI(ZINV(g)) Z))] raises the
inverse exception during the normalization process, then
there will be no fusion performed. Otherwise, g is fused
with ZAMV(g) during the normalization process. To see why

N[INV(9)] — raise inverse(g) illegal use of INV(g)
v — v variable

Nc] — ¢ construction

N(t1.%2)] — (N[a] Nt]) pair

NAz.€] — Az.Ne] abstraction

Nred"(f1..... fa)] — red”(N[fi]. N[f=D) reduction

NTred” (f) (ct)]] — N[f(El(xed” (f)))] combinator reduction

N[[redTl T2 (T) (Ct17 tQ)]] - { e s Cl(z) i N[[Ied o (f) (Cth CI(:E))]] o partial reduction

where ¢; € &C(m2)

red”(1) (./\/'[[J]])E 6 :
N[[g(redT(f) t)]] — be = AT ./V'[[g(fc(D.T(I/VV()) E)):l] unary promotion
handle inverse(g) = N[g](N[red” ()])

red™ <72 (3) (W], Nt2])
where Ve1 € GC(11), Voo € GC(72) : binary promotion

Ng(red™ (f) t1,red™(R) t2)] — Perxer = A(f[lljjj(#)(m,u))
Ng(fer (€5 (TNV(9)) T1). ey (€22 (INV(9)) 72))]

handle inverse(g) = N[g](Nred™ (£) t:]. ./\/'[[red”(k) t2])
Ng(INV(g))] — unary elimination
Ng(IWV(g) 1, TNV (g) z2)] — #(z1.32) = z172 binary elimination
N(Av.e)t] — Nbeta(v,e,t)] 3 reduction
Nfe] — NTFINTeD application

Figure 1: The Normalization Algorithm

NTg(f(DI(INV(g)) T))] computes ¢. we use the unary pro- 4.1 Example of a Normalization by Unary Promotion

motion theorem:

Ve€e &(r): ¢.0Di(g) = go fe

We will improve length(zip(z, y)), where:

& de.0DI(g) o EI(TMV(g)) = go fo 0 EI(TNV(g)) length(z) = red"**(A().Zero, A(a, r).Succ(r)) =

& ¢ 0&l(goINV(g)) = go feo&l(TNV(g)) . list x1
(by Property (3)) zip(z,y) = red"" " fun, fuc, fon, fec) (2, 9)
& b= gof.ofl(IW(g) fon = A0, ()-Ni (u1)
(by unary elimination) where fne = A((). (b, s)).Nil (u2)
) o fen = A(a.1). ()).Nil (u3)
where go ZNVY(g) was cancelled out in the unary elimination fee = Aa, (b, 7)).Cons((a,b),r) (u4d)

phase. In order to prove that the binary promotion phase
of the normalization algorithm is correct, we use the binary
promotion theorem. Let ¢; € GC(71) and c2 € GC(m2). Then
from the binary promotion theorem we have:

From the unary promotion phase of the normalization algo-
rithm:

X N[[length(fedlut“wt(fnn: fre: fen. fCC) (z, y))]]
qulXC?OMcixcg g) = gO(fcl XhCQ) . Iedlutxz”t((bnn;(bnc;(bcn;(bcc) (l‘y)
G Peyxey 0 MIIET2(g) 0 (EZH(INV(g)) x E22(INV(9)))

= 90 (fe X hey) 0 (1 (IWV(g)) x E22(TNV(9)))
© ¢C1Xc2 0 £33 (g0 (TMWV(g) x I/W (9)))

= go(fe x hCQ) (ng)) 57—2 (g)))
A ¢cl Xco 52—11;;22(#)

= g0 (fey X hey) 0 (£ (INWV(g)) x £22(TNV(g))) O

where:
1) ¢nn = A().length(fnn()) = A().length(Nil)
= X().Zero
2) dne = M() b,s)).length(fnc(()(s)))
= X((). (b, s)).length(Nil) = A((), (b, s)).Zero
3) den = A(a1).())length(fnn((a)()))
= A((a,1),()).Jength(Nil) = A((a,1),()).Zero
4) ¢ee = Ma, (b, 7)))ength(fec(a, (b, (length) r))))
= A(a, (b,7)).length(Cons((b), ZMV(length)(r)))

by (u4))

)

)(
(b,)(Succ(length(ZNVV(length)(r)))
).

(

by combinator reduction)
Succ(r)
by unary elimination)

)
)
)
. (b, 1)

Therefore, Mlength(zip(z. y))] is equal to:

red sttt (X(). Zero, A((), (b, 5)).Zero,
A((a.), ()).Zero, XMa, (b, 7)).Succ(r))(z, y)
4.2 Example of a Normalization by Binary Promotion

We will normalize zip(map(f)(z), map(g)(y)), which is a bi-
nary reduction applied to two unary reductions, where:

map(f)(z) = red"**(A().Nil, A(a, r).Cons(fa,r))z

The binary promotion part of the normalization algorithm
applied to this case is:

Nzip(red"=*(X().Nil, \(a, 7).Cons(f a, 7)) z,
red"**(X().Nil, A(b, 5).Cons(g b, 5)) y)]
— I‘edhétxzzg(ﬁbnny (bnc; (bc'n: (bcc) (1"7 y)

From the binary promotion phase of the normalization al-
gorithm we have:

1) ¢nn = M(),()zip(Nil, Nil) = X((). ()).Nil
2) dne = A(), (b, s)).zip(Nil, Cons(g b, s))
= A((), (b, s)).Nil
3) ¢en = A(a,7),())-zip(Cons(fa,r), Nil)
= (),)N
4) dee = Ma, (b, r-5)).zip(Cons(f a, INV(zip) 1),

Cons(g b, INV(zip) s))
a7(b7 T-S)).CjOHS((fa,fq b) .
zip(ZAV(zip) r, INV(zip) 5))
(b.7-5)).Cons((f .). 75)

Il
=

= Aa,
Therefore, zip(map(f)(z), map(g)(y)) is normalized to
Iedlistxlzst()\

(0: 0)-NiL A((). (b. 5)).Nil, A((a,). ())-Nil,
a. (b.7-s)).Cons((f a. g). 7-))('Y)

5 The General Promotion Theorem

In this section we generalize the promotion theorem to cap-

ture any combination of n-ary reductions. In order to do

that, we generalize the combinator £ as ST/T :

() = id

if —inductive(c)

EVT(F)

ENITITTNf x fy) =

EX(f) if inductive(c)
7'1/7' Y1) x 57'2/"' 2(f2)

I
and the combinator M as MZ/T :

MZ/TI = id if minductive(c)
MIT(F) = DI(f) if inductive(c)
Ty X T /T’X‘r’
cxes b (f)

Az, y).MZi/Tl (Az MTQ/T? Aw.f(z,w))y)z
Definition 10 (General Reduction) A function f of type
r — 7' is a general reduction (denoted as QT_’TI) if it is de-
rived from the following rules:
idT E_gT—»T
red”(f) e g7~7
fi x fo e ginxr={nixmz) gp g

For example, length x id"*" is a general reduction from
g(list xnat)—(nat xnat)

where id7 is the identity for T

if red”(f) is of type 7 — T
€G T and f € G727

We will present a promotion the-
orem for any composition g o f, where ¢ : 7' — a and

f c gT—)T .
Lemma 1 For any f € QT_)TI, g: 7 — a, and c € &C(7):

El(gof) = MI7(g)o &l (1)

Proof: If 7' =T and f =id or f = redT(T) we have £l (g o
f) =DI(g)o&7 (f). which is true because of Property 3. We

assume the theorem is true for 71 and 7. For (fi x fg) c

i I
G(m*m2)=(T1X73) and ¢ = ¢; X co we have:

£1% (g0 (fi x f2))

= Me.y).83 A28 Awg(f1(2), f2(w))) y) z
= Az, y). M TI/TI()\ MTQ/TQ()\w g(z,w))

(€2 12)) (€177 (1) 2)

= (Mz.y). M”/Tl()\ M”’T?(Aw g(z.w))y) z)
o0 (f1) x €275 (£2)

- M™ ><T2/7'1><T2(g) 0 & x72 /7] xrz(fl X f2) O

c1 Xca cy Xca

The combinator Z., for f € QT_’TI and ¢ € GC(1), is defined
as follows:
I(id") = ¢
I (red™(f)) fe
Icl XCQ(fl X fQ) IC1(f1) XICQ(fQ)
Note that the first equation may be derived from the second,

since for any inductive type T we have id = red? (f) where
fc = ¢ for any value constructor ¢ of T.

Lemma 2 For any f € ¢~ andce aC(r):
foc = Ic(f)oé'g/Tl(f)

Proof: f 7 =7 =T and f = id then Ic(f)OEZ/TI(f) =
coEX(f)=c=foc. For ' =T and f = red”(f) we have
I.(f) = fe. Then foc= feo&l(f), which is the definition
of reduction. We assume the theorem is true for 71 and 7.
For f = (fi x f2) € G xm)=(11%72) and ¢ = ¢1 X ¢2 we
have:

foc

(1 XfQ)O(C1 XCQ)
(f1 o} 61) X (fz o} CQ)

(Ter(fi) 0 &?”%fl)) X (Zey (f2) 0 £ (£2))
(Zey (1) % Teg(f2)) 0 (€17) x 0 f))
= Ic f) ((/‘T/T (.f)

red”(¢) (Nt])

be = NET(#

Ng(ST(INVV(9)) (21, ... 20))] — #(z1,....20)

= T1-.

where f € QT_’TI

(#) 7). N[yg(Z
handle inverse(g) = N[[g]]

g'T'—>a anchegC(T):
) 17 (8T (IW(9)) T))]
[[ft]])

. Tn general elimination

general promotion

Figure 2: The General Normalization Algorithm

Theorem 4 (General Promotion Theorem)
Let f € gT_’TI and g : 7' — a. Then

Ve e (1) : g0 M7 (g) = goZ.(f)
go f = red”(¢)
Proof: We will use Lemmas 1 and 2. Let » = go f and
cE gC(r) Then
noc gofoc

goT(f)o el (f)
pe o M7 (g) 0 £ (f)
be0&l(gof)

¢ 052—(77)

by Lemma 2

by premise
by Lemma 1

Thus, 5 is the reduction red”(¢). O

The rules in Figure 2 extend the normalization algo-
rithm, presented in Figure 1, with a general promotion phase.
Therefore, the unary and the binary promotion phases as
well as the unary and binary elimination phases of this al-
gorithm can be replaced by the rules in Figure 2. In this
algorithm, S87(g) creates multiple copies of the function g
into a product that has the same shape as 7:

Definition 11 (Combinator S)

S%(g)

g
STX(g) = ST (g) x S™*(g)

The correctness proof of this algorithm is derived from the
general promotion theorem:

Ve e ge(r) .o M7 (g) = goT(f)
& b0 M7 (9) 0 £/ (ST(TWV(9)))
=gozuw5”fwwmmwm
& $.0&l(goS7(

& oo EI(#) = goT(f)o &Il (87(IW(g)))

For example, we will normalize nth(d)(append(z,y), n),
where nth(d)(z,n) is:

redh“x"‘”()\((), ())-d. X)), 1).d, A((a, 1), ()).a, Ma, r).r) (z.n)

We have f c g(lzstxnat)—{listxnat) and
f =red"**(A().y, A(a, r).Cons(a, r)) x id™**.

The general promotion part of the normalization algo-
rithm applied to this case is:

Nnth(d)(red***(A().y, A(a, 7).Cons(a, r)) z,id"**(n))]
_ IedZIStxnat(¢H27¢‘TL£7¢CZ7¢CS) (:c,n)

IW(9))) = goZe(f) 0 £/ (ST (TW(g)))

where
1) ¢ = MO.()-nth(d)(y. Zero)
2) dne = (). i)nth(d)(y, Succ(s))
3) e i Ega T% ())-nth(d)(Cons(a, r), Zero)
4) ¢ = Ma,r- z).nth(d)(Cons(a,ZNV(nth) T),
' Succ(ZANY (nth) 1)) '
A(a, r_i).nth(d)(ZMV(nth) r, ZNMV(nth) 1)

Aa,r_t).rs

Therefore, nth(d)(append(z,y), n) is

red"sEXmet (X ((), ()).nth(d)(y, Zero),
(O)nth (d)(y, Succ(1)),
E(a r). ()).a.

r_)'rz)zn)

>/>4>/>/

6 Converting Functional Programs into Algebraic Pro-
grams

This section presents an automated method of converting
regular recursive function definitions, such as those found
in an ML-like language, into algebraic programs with re-
ductions. It uses the normalization algorithm to translate
function definitions into general reductions as well as to im-
prove the resulting programs. The normalization algorithm
will raise an exception if this translation is impossible. The
resulting reductions, though, may be of higher-order. Subse-
quently, a second phase is needed to convert the higher-order
reductions into first-order.

Definition 12 (Recursive Function Definition) A func-
tion f: ((Th x To) x -+« x Tp)— 51—+ — Sp —T' has
a recursive function definition if ¢t can be computed by M
number of recursive rules of the form:

f(Ci, (1), . Ciy (TR)) V1 - U = €

where vi are varitables and T are vectors of variables. The
left side of this equation must be linear (i.e. every variable
should appear only once in the patterns on the left side of
the equations).

Before considering the general case of Definition 12 where
n > 1, we examine the simple case where function f has
only one recursive parameter (i.e. where n =1):

Theorem 5 Let f be a recursive function definition of type
T—8 — -—8,—T1', computed by the recursive rules:

f(Ci(@))v1 ... v = ¢

one for each constructor C; of T, and let F = redT(E) be a
unary reduction, where VC; € QC(T):

be; = AZAv1 .. A N[(AToe:) (EL(ZVV(£)) 2)]

If there s no exception raised during the normalization of a

¢c;, then F = f.
Proof: VC; € GC(T), f satisfies:

foC; = Avy...Avm AT ¢;
& ¢, 0 EL(f) = Avi... Avm. AT e
& ¢e, 0 EL(f) 0 EL(INV(S))
= (Av1 ... Avm.ATee;) o EL(IWV())
& ¢, 0 EL(f o INV(S))
= (Av1... Avm. AT.€5) 0 ECTz (ZAVV(f))
& de, = (Av1.. Avp AT.ei) 0 EL(INV(f)) o

For example, list append is defined by the following recursive
rules:

app(Nil) y
app(Cons(a.l))y

Y
Cons(a, app({) y)

The inductive program that computes app (generated by the
algorithm in Theorem 5) is:

red"**(A().Ay.y. A(z1. 22).Ay.Cons(z1, app(ZANV(app)(22)) v))

= red"*"(A().Ay.y, (21, 22).Ay.Cons(z1, 22 (y)))

Note that primitive recursive programs, such as the factorial

defined as:

fact(Zero)
fact(Succ(n))

Succ(Zero)
times(Succ(n), fact(n))

will fail to produce an inductive program, since the first

TNV (fact) in
times(Succ(ZNY (fact) n), fact(ZMV(fact) n))
will not be cancelled out.

We will use the following abbreviations for the general
case of Definition 12:

T = ((T1 X TQ) X Tn)
c = ((Ciy xCi,) x---xCy)
T = (F1.72),....Tn)

In order to generalize Theorem 5 to work on any recursive
function definition in Definition 12, we define a new combi-

nator P to be the product of all functors SCTI’, where 7 is
the product of all 7; and ¢ is the product of all C;:

Definition 13 (Combinator P)
PI(f) = i

if minductive(c)

PL(f) = E(f) . .
Pcrll :er (f) = P(f)x PE(f) if inductive(c)
Property:

E(f)oPilg) = E(fo87(9))

where the combinator §™ was defined in Definition 11.

Proof: If ¢ is not inductive then the property is true. Other-
wise, if 7 = T then EX (f)oEX(g) = EX(fog). Ifr =i xm

and ¢ = ¢1 X c2 then:

(f)OPT(g)
(z,y).E(Az.E2(Aw. f(z,w))y)) o (Pl (g) x P2(g))
z). E0)\z £72()\w f(z.w)) (PZ2(9) 9)) (P))
(z.9). STl)\z ETQ()\w f(S™(g) =. S (9)w))y

ET(foS g)) o

Theorem 6 Let f be the function computed by the rules in
Definition 12 and let F = red” (¢), where for each of the M
equations in Definition 12 (i.e. Ve € GC(7)):

de = AME(Ao N[(AT.€2) (PLINV(£)) 7)]

If there s no exception raised during the normalization of a

¢c, then F = f.
Proof: Ve € GC(7), f satisfies:

1 IIM

#) E).)\’U1 ‘e

foc = Avi... Avpm. AT.€;
$c0&I(f) = Avi... vy AT €;
de 0 EL(f) o PL(INV())

= (Av1... lvm AT.€;) o PI(INV(f))
de 0 EL(f o ST(INV(F)))

= (Av1... v AT.e;) o PI(INV(f))
& o &I(#) = (Avi... A AT.e;) o PI(INV(f)) O

¢ T

For example, the nth element of a list is defined by the
following recursive rules:

nth(Nil, Zero) d = d
nth(Nil, Succ(7)) d = d
nth(Cons(a,!), Zero) d = a
nth(Cons(a,!), Succ(i))d = nth(l,1)d

The inductive program that computes nth (generated by the
algorithm in Theorem 6) is:

red"sExmet(X((), (}).Ad.d, A((), z1
A(z1, 22 -23). Ad.nth(ZAVY (nth) z,

= red" " (X((), (). Ad.d, A((), 21).Ad.d,
A((Zh 22), ()))\d21)\(21 . ZQ-Zg).)\d.ZQ_Zg(d))

)Add)\((21 . 22), ()))\d21
,Z/\/V(nth) 23) d)

The inductive programs generated by the algorithm in
Theorem 6 are higher-order in general, that is, reductions
return functions instead of values. If a variable v in Theo-
rem 6 appears in some restricted form in every accumulating
function ¢., then it can be pulled out from the reduction.
The restricted form is as follows: every term (re; ...em)
in ¢., where r is an accumulative result variable from =z,
has ex = vr and no other e, refer to vx. Then each term
(rei...em) is converted into (rey...ex—1 €ry1...€6m) and
each Avg is pulled out from the reduction.

For example, app that computes list append was previ-
ously converted into:

redh“()\().)\y.y, A(z1, z2).Ay.Cons(z1, 22(y)))
which is simplified under the above algorithm into:
)\y.redhg()\().y, A(z1, z2).Cons(z1, z2))
Similarly, the nth of a list is simplified into:

Adored ™ (A((), ()4 A((), 21).d: M(21. 22), () 21,

A(Zl, zZ2 _23).22 _23)

An example where this precondition is not met is list reverse
Az.rev(z) Nil, where rev is:

rev(Nil) y =
rev(Cons(a,l))y =

Y
rev(l) (Cons(a, y))
and the inductive program that computes rev is:

red"**(A().Ay.y, A(z1, 22). Ay.rev(TAV (rev) (22
= 1ed"**(A().Ay.y, A(21, 22).Ay.22(Cons(z1, 9)))

In this case, Ay cannot be pulled out from under the reduc-
tion. The resulting program is a second-order reduction that
computes list reverse in linear time. Note that variable y in
rev(z)y is not an inductive parameter, but instead it serves
as an accumulator which is expanded at each inductive step.
Programs containing such simple forms of second-order re-
ductions can be normalized by using a promotion theorem
similar to the one for first-order reductions [15].

7 Related Work

To our knowledge no other work deals with generic recursion
schemes over multiple structures. For simple inductions our
work is closely related to Wadler’s work on listlessness and
deforestation [17, 7, 16] and to Chin’s work on fusion [2]. De-
forestation works on all first order treeless terms. A treeless
term is one which is exactly analogous to a safe term, but
is described in a much different manner due to the lack of
structure imposed on such terms. Chin generalizes Wadler’s
techniques to all first order programs, not just treeless ones,
by recognizing and skipping over terms to which his tech-
niques do not apply. His work also applies to higher order
programs in general. This is accomplished by a higher or-
der removal phase, which first removes some higher order
functions from a program. Those not removed are recog-
nizable and are simply skipped over in the improvement
phase. The application domain of our fusion algorithm is
more restricted than the domain of all these methods, but
our algorithm is more effective since it is fully automated.
In [8] a new, simple, but very effective, automatic technique
is presented for implementing deforestation in a compiler.
This method requires that each list-producing functions is
expressed as a build call and each list-consuming functions
is expressed as a foldr call. The foldr operator is similar
to our list reduction while the build operator is a dual-like
function of foldr (this technique is an automation of the Hy-
loSplit theorem of Meijer et al. [13]). The technique simply
fuses adjacent foldr-build pairs by eliminating them com-
pletely ((foldr f) o (build g) = g o f). We believe that this
method could be more effective if folds are promoted down-
wards or builds are promoted upwards in a term until they
fuse. This can be achieved effectively by applying promotion
theorems.

Our stereotyped recursion schemes as well as the promo-
tion theorems are highly influenced by the Squiggol school
of program construction [12, 13, 11, 1]. Their goal is to con-
struct a calculus of programs based on some well-behaved
recursion schemes, in which their inductive laws, proved
once and for all in their generic form, can be instantiated
and used for calculating program transformation as well as
for proving properties about programs without the need for
discovering new laws or using explicit induction. The pro-
motion theorems are examples of a large class of theorems
that come for free. We believe that our notation, which is

) (Cons(z1,y)))

11

based on calculus of construction, is more intuitive to func-
tional programmers than their formalism (also called the
Bird-Meertens Formalism), which is based on category the-
ory. Even though their work is more general than ours, we
provide a fully automated system that use the promotion
laws effectively.

8 Conclusion

The functional programming style has been criticized be-
cause of its waste of resources caused by the building of
intermediate data structures, unused closures, and garbage
collection. We believe that this is not caused by the func-
tional style per se, but by the use of unrestricted recursion
which makes it difficult to validate the application of well
known optimizations in unstructured programs.

Recent language proposals to program with the explicit

structure of generic recursion schemes are an attempt to
circumnavigate these problems. This paper provides a first
step towards automatic optimization and compilation for
such languages. To our knowledge the algorithm presented
here is the first algorithm (not based upon a fixed set of
patterns and datatypes) that automatically performs fusion
without a memoization phase, and which deals with multiple
inductions.
Acknowledgements: Leonidas Fegaras is supported by the
Advanced Research Projects Agency, ARPA order number 18,
monitored by the US Army Research Laboratory under contract
DAAB-07-91-C-Q518. Tim Sheard and Tong Zhou are supported
in part by a contract with Air Force Material Command (F19628-
93-C-0069).

References

[1] R. Bird and O. deMoor. Solving Optimisation Problems
with Catamorphisms. In Mathematics of Program Con-
struction, pp 45-66. Springer-Verlag, June 1992. LNCS
669.

W. Chin. Safe Fusion of Functional Expressions. Pro-
ceedings of the ACM Symposium on Lisp and Func-
tional Programming, San Francisco, California, pp 11—
20, June 1992.

R. Cockett and T. Fukushima. About Charity. Techni-
cal report, Department of Computer Science, the Uni-
versity of Calgary, Alberta, Canada, June 1992. Re-
search Report No. 92/480/18.

L. Fegaras. Efficient Optimization of Iterative Queries.
In Fourth International Workshop on Database Pro-
gramming Languages, Manhattan, New York City, pp
200-225. Springer-Verlag, Workshops on Computing,
August 1993.

L. Fegaras. A Transformational Approach to Database
System Implementation. PhD thesis, Department
of Computer Science, University of Massachusetts,
Ambherst, February 1993. Also appeared as CMPSCI
Technical Report 92-68.

L. Fegaras, T. Sheard, and D. Stemple. Uniform Traver-
sal Combinators: Definition, Use and Properties. In
Proceedings of the 11th International Conference on
Automated Deduction (CADE-11), Saratoga Springs,

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

New York, pp 148-162. Springer-Verlag, June 1992.
LNCS 607.

A. Ferguson and P. Wadler. When will Deforestation
Stop. In Proceedings of 1988 Glasgow Workshop on
Functional Programming, Rothesay, Isle of Bute, pp
39-56, August 1988. Also as research report 89/R4
of Glasgow University.

A. Gill, J. Launchbury, and S. Peyton Jones. A Short
Cut to Deforestation. Sixzth Conference on Functional
Programming Languages and Computer Architecture,
Copenhagen, Denmark, pp 223-232, June 1993.

T. Hagino. A Categorical Programming Language. PhD
thesis, University of Edinburgh, 1987.

R. Kieburtz and J. Lewis. Algebraic Design Language
(Preliminary Definition). Technical Report #94-002,
Oregon Graduate Institute, 1994.

G. Malcolm. Data Structures and Program Transforma-
tion. Science of Computer Programming, 14:255-279,
1990.

G. Malcolm. Homomorphisms and Promotability. In
Mathematics of Program Construction, pp 335-347.
Springer-Verlag, June 1989. LNCS 375.

E. Meijer, M. Fokkinga, and R. Paterson. Functional
Programming with Bananas, Lenses, Envelopes and
Barbed Wire. In Proceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Com-
puter Architecture, Cambridge, Massachusetts, pp 124—
144, August 1991. LNCS 523.

T. Sheard and L. Fegaras. A Fold for All Sea-
sons. Sixth Conference on Functional Programming
Languages and Computer Architecture, Copenhagen,
Denmark, pp 233-242, June 1993.

T. Sheard and L. Fegaras. Optimizing Algebraic Pro-
grams. Oregon Graduate Institute, Technical report
#94-004 A version of this paper is ftp-able from
cse.ogi.edu:/pub/pacsoft/papers/OptAlgProg.ps.

P. Wadler. Listlessness is Better than Laziness: Lazy
Evaluation and Garbage Collection at Compile-time. In
Proceedings of the ACM Symposium on Lisp and Func-
tional Programming, Austin, Texas, August 1984.

P. Wadler. Deforestation: Transforming Programs to
Eliminate Trees. Proceedings of the 2nd Furopean Sym-
postum on Programming, Nancy, France, pp 344-358,
March 1988. LNCS 300.

12

