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4 Conclusion and Future Work

There has been much recent interest in capturing multiple collection types in a single database
language. Earlier approaches proposed a separate, self-contained, calculus for each collection type
along with a number of coercion operators to transform one collection type to another [4]. These
approaches require that a list be converted to a set before it is joined with a set. In our earlier
work [10], we expressed a fixed number of collection types as monoids. Even though this approach
allows us to mix operations over multiple collection types in a safe way, it does not support user-
defined collection types.

In this paper we followed a novel approach: we created two new type constructors that capture
the commutativity and idempotence properties of many user-defined collection types. We presented
a small set of typing rules, which can be used to filter out all inconsistent programs and we proved
the soundness of the typing rules.

In conclusion, we have presented a database calculus, Fg1,, based on Fy that

e captures multiple collection types, such as sets, bags. lists, and vectors, which can be arbitrary

nested;

e is type sound and the type-checking algorithm aborts all inconsistent programs, such as

converting a set into a list;
e captures all primitive recursive functions;

e supports a normalization algorithm that consists of a small number of reduction rules and

generalizes many earlier algebraic optimization algorithms for queries.

A common criticism against Iy is that it requires a large amount of type annotations, which
make it impractical as a real programming language. It has been proved that type reconstruction
(i.e., inferring the types of I’y terms when some type annotations are missing) is undecidable in
general [24]. But there are languages that partially solve this problem. For example, SML does not
require type annotations at all. In fact it does not allow explicit universal quantification over types.
The parametric polymorphism inherent in SML is achieved by using a generic ‘let’ construct (called
let-polymorphism). For future work, we intend to explore this idea of defining a database language

without explicit type annotations that captures the same database collection types as Fqp.
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The following are examples of common operations over bags that people have proposed. The

boxed operations are the problematic expressions that are filtered out by our typing rules.
bag-map = Af. A6 Af:(3—6. Az :bag(fB). Aa. A[c:d=a,n:al.

zla] (Mly:B.r:al.c(fy)r)n
bag-cardin = Af. Az :bag(f). Aa. A[s: ()= a,z:a].zla] (Aly:p,r:a]l.s()r) 2

list>bag = Af. Az :list(f). Aa. AN[c: f=a,n:a].zla] (Ay: 8. Ar:a.cyr)n
bag>list = AB. Az :bag(fB). Aa. Ac: f—a—a. An:a. z]a] (A [y.ﬁ,r.a].)n
choose = AB. Az :bag(fB). Ad: p.z[B] (Aly: B.r: B].[y]) d

where indicates a type error because ¢ y of type a — a is applied to r of type Ga, which is
not acceptable by our typing rules (according to Rules T5 and T6, only €a — Ga or €a— &a can
be applied to ¢a). The[y]|is another type error because Rule T1 expects y to be either of type &/
or @3. These two operations, bag>list (that converts a bag into a list) and choose (that selects a
bag element), are the ones we want to rule out, because they are nondeterministic.
Set operations in Fgp can capture relational and nested relational operators:
join = AB. A Ay. Ap:B—bd—bool. A\f: B—b6—~. Az :set(F). Ay : set(d).
Aa. Ae:[v, OB a,u:(),n:al.zla]) (A[z:5,u:(),r:a]l.yla] (MNw:d6,u:(),s: al
iffa] (p 2 w) (¢ (pain(f = w,())) 5) 5) ) m
flatten = Apf. Az :set(set(f)). Aa. Ale: [B, OB a,u:(),n
cardin = Af. Az :set(f). Aa. A[s: ()= a,z:a]. z[a] (A[y: ﬁ w:(),r:al.ls(
bag>set = Af. Az :bag(f). Aa. Ac: B, a,u:(),n:al. zla] (AN[y:B,7:a]. c(pair(y,.()))r)n
set>bag = Af. Az :set(f). Aa. A[c: B=a,n:al.z[a] (Aly: B,u:(),r:al.[cyr])n
forall = AB. Ap: f—bool. Az : set(f). z[bool] (Aly: B, u: (), r: bool]. r[bool] (p y) false) true

a]. 2la] (Aly : set(8), u ()7 : al. yla] e 1) m
)T

The |s () r|and [cy r]indicate type errors because (s ()) and ¢ y of type $a — Ga are applied to

r of type ®a (according to Rule T6, only ®a— @a can be applied to @a).
Theorem 2 The Fy, typing rules are sound.

Proof sketch: We have the following axioms (for all ¢, 1,3, t3):

Dlet] € Plet] € D[] (5)
D[ty =t5] C D[ty — &ty — &15] (6)
Dﬂ[tl,tg]:‘? tg]] g D[pair(tl,tg)—>®t3—>®t3]] (7)

To prove the soundness of the typing rules, we use the same technique as in the proof of Th. 1. For

example, the T5 rule is mapped into the predicate:
T[] = (e1 € D[@t—&1t] A €3 € D[ot] = (€1 €2) € D[Et])
for o € {&,0}. This is a tautology because:

€1 € D[Et—Et] A e € D[ot]
= (Vz: 2 € D[&t] = (e12) € D[Et]) N €2 € D[ot] from Eq. 1
= (€1 €2) € D[&t] from Eq. 5 O
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t.t1.t9.13 1= v | V. t | t1—1o | t1 =15 | [tl,tzbtg
€, €1,69 n= x| eres | Awitie | Avee | eft] | Azt xeita].e | Az ity mo ity w3 e
r = <> | z:t,T | z:@t,T | z:&t,T
O = e | R
T.zi:t1.20: Fto e Et ket t TFey:ot o .
(T1) xy it xo  Bta e Bty (T5) € Bt—@ €2 € {e,0}
TE(Alzy it 20 ta].€) ity =19 TF(e1es): @t
(T2) F.zi:t1.29:t0. 23 : Qg b e : @13 (T6) The:@t—®t Thre:ot oc{E 0}
Tk (/\[CL‘l Ztl,éL‘Q th,d?g . t3].€) : [tl,t2]2> t3 rr (61 62) TRt
Thei:t t They:t ke 0O t Tkey:t
(T3) €1 111 =12 €2 11 (T7) €1 (t1 — 2) €2 111
Tk (61 62) : @t2—>6}t2 Tk (61 62) : th
T'keq:[t.t t F'kes: d(tq.1 ke : OV t
(T4) e : [ttt ez : prod(ty, tz) (T8) € (Vv t1)
T+ (61 62) . ®t3—>®t3 TF (E[tg]) . D([tQ/b]tl)

Figure 2: Types and terms in Fgp and the typing rules

If s :set(f), then (z =y = caz(cyz) =cxz) = sc(scn)= scn. That is, the set key is the
entire set element of type 5. A more interesting example is a set of employees with the employee’s

social security number as the primary key:
employees = Va. [[int, pair(int,int)E a, () o

where pair(int,int) contains the non-key attributes of the employee.

3.3 The Typing Rules

Figure 2 presents the meta-syntax of the types and the terms in Fgp, along with the typing rules
that extend the typing rules in Figure 1. The new A-abstractions A[zy : t1, 29 : £2]. € and Az :
t1.x9 : o, x3 : 13]. € create functions of types t; =ty and [11, {2} t3, respectively. The operational

meaning of these A-abstractions is straightforward:

Az 1y, 29 1 t9]. € = Azq ity Axg i ig. €
Alzy i th, 20 tg, 23 t3]. € = Az :prod(fy,t2). Azg 1 ts. [(fstz)/z1, (snd z)/z2]e

where z is a variable that does not appear free in e.

The types in the type binding I', as well as the types of the type assertions, may be annotated
by & or €. Rules T5 and T6 indicate that if a commutative (resp. commutative and idempotent)
function is expected, then either a commutative or a plain function (resp. any function) can be
passed. Rules T1 and T2 create the annotations from the new type constructors. The other rules

simply propagate the annotations.



This equation indicates that any two values f.g of D[t; = t3] satisfy fz(gyz) = gy(fz2),
for all z,y,2. This implies that every value, f, of D[t; = 3] is a commutative function: i.e.,
fa(fyz)= fy(fzz), forall z,y, 2. Using this type constructor, the bag type can be represented

as follows:

bag(3) = Va.(f=>a)=>a

That is, if we instantiate a to ¢, we get:

Dl(s=t)=1] = {f.g] Vel e D[s=1]: ¥ne DI : felgcdn)=gc (fem))
= {f.g9| Ve,d: Va,yeD[p]: Yz€D[t]: ca(yz)=cy(czz))
= VneD[t]: fe(gdn)=gc(fen)}

This implies that if a function ¢ (which corresponds to the bag insert operation) is commutative
(i.e.,cz(cyz) =cy(cz z)), then the bag iteration (z ¢ n) satisfies z ¢ (yen) = yc(z cn). Instances
of the type 1 = 3 can be constructed by the special A-abstraction A[zy : 1, 29 : t5]. €. For instance,
the bag z = {1,2}} is represented by Aa. A[c:int=a,n :a]. ¢1(c2n)and the bag y = {3.4} by
Aa. A[c:int=a,n :a]. ¢3(c4n). If cis commutative, then, according to the previous definition,
zla] ¢ (y[a] ¢ n) = yla] ¢ (z[a] ¢ n). That is, c1(c2¢3(c4n))= c3(cdcl(c2n)). Consequently,
the bag union defined by

tWy = Aa.Mc:f=a,n:a] z[a] c(yla]cn)

for z,y : bag(3), is commutative, i.e., z Wy = y ¥ z.

The integer type can be coded as bag(()):
int = Va.(()=a)=a

(Recall that () is the unit type Va : a — a, which has only one instance: the identity function.)

This coding of integers is isomorphic to the type Ya. (a —a)—a—a.

3.2 Idempotence

We introduce another type constructor [#1, ¢35 13 that captures types that are both commutative
and idempotent. Its domain satisfies D[[ 1, t25 #3] C D[prod(t1,t2)=t3] C D[prod(t1,t2)—1t3 —

t3]. More specifically, we have:
D[ttt t3] = { f|f € D[prod(t1,t2)=13] A Va,y € D[prod(ty1,t2)] : Vz € D[ts] :
(fste) = (fsty) = fa(fyz)=fvs) (4)
where prod(q,%2) is the product of the types ¢; and f3: the first component of type #; is the
set key while the second is a non-key element. If two elements z and y have the same key (i.e.,
(fstz) = (fsty)), then they satisfy fz (fyz) = fx 2. That is, if we insert two values with the same

key in a set, only the last value is kept in.

For example, sets can be captured as follows:

set(8) = Va.[[8.0F a.0b a



The Fy reduction rules can be used for program fusion [6] and deforestation (the elimination
of intermediate data structures) [23]. That is, when one program produces an intermediate data
structure as output and another program consumes this data structure as input, we can fuse these
two program in such a way that the intermediate data structure is no longer produced. Consider

for example the fusion of map with filter: (where f: 38—~ p:y—bool, and z : list(53))

flter[y)(p)(maplBI](f) 2)
= Aa.Ac:f—a—a. Inta. (Aa. de:y—a—a. An:a. zla) (Az: 5. Ara.c(f z) r)n)a]
(Az:f. Ara. (pz)a](czr)r)n
=5 Aa.dc:f—a—a dnta. (Ac:y—a—a Anza.zla] (Az: 5. Ar o e (f 2) 1) n)
(Az:f. Ar:a. (p2)a](czr)r)n
=5 Ao dc:f—a—a dn:a.zfa](Az: . Ara. (Az: . Ara. (p2)la](czr)r)(fz)r)n
fa] (A= 2 8. Ar 0. (p (f 2)la] (¢ ( 2) 1) r) m

Notice that the list created by map in the original program is no longer produced in the normalized

(8]

=5 Aa.Ac:f—a—a. An:a. za

program. The - and 5-reduction rules can also be used for proving program equivalences without
the need of inductive proofs: two functions are extensionally equal if their normal forms are a-

equivalent (i.e., they are equal under variable renaming).

3 Fg4: The Polymorphic Database Calculus

Bags and sets can be considered as lists with some additional properties [3, 10]. For example, the
list append function is associative but the bag union is both associative and commutative, and
the set union is associative, commutative, and idempotent (i.e., the union of a set with itself is
the same set). These additional properties make the list representation inappropriate for bags and
sets, because of possible inconsistencies that are introduced by some inherently nondeterministic
operations. For example, there are infinite ways of converting a set into a bag (e.g., the set {1}
can be converted into the bags {1}, {1,1}, {1.1,1}, etc.), and many ways of converting a bag
to a list (if all the possible orders are considered). Since F; is purely deterministic, we would like
to avoid such cases. In addition, by representing bags and sets as lists, the additional properties
of these types cannot be used for reasoning and optimization. There some optimizations for bags
that are not possible for lists, such as rearranging join orders.

In this section we extend the type system of Fy to capture types with commutativity and
idempotence properties. We present a set of typing rules for these types, which accept legitimate

types only, and we prove the soundness of these rules.

3.1 Commutativity

We introduce a new type constructor t; =>¢5 that captures commutative types. Its domain satisfies

D[t1=12] C D[ty — 1ty —1t2]. More specifically, we have:

'D|It1:>t2]] = {fg|fg€D|It1—>t2—>t2]] A nyGD[tl]]VZED[tQ]] H
frz(gyz)=gy(fzz)} (3)



Church numeral is also an iteration scheme to manipulate this numeral. For example, (4 plus 3)
calculates 4 4 3 since it is equivalent to succ(succ(succ(succ 3))). This iteration scheme (also called
fold [9, 22] and catamorphism [18]) is the only way to manipulate integers in Fs.

Church numerals can capture all primitive recursive functions, including predecessor, difference,
and integer equality. But Church numerals go beyond primitive recursion when computing higher-
order values, that is, when doing second order arithmetic (for more results on expressiveness, the
reader is referred to earlier work [13, 14, 15, 1]). For example, the Ackermann’s function is coded

as an iterator that computes values of type int —int:
ack = Am:int. An :int. z[int —int] (Af : int —int. Ak : int. (succ k)[int] (succ zero) f) succ n
Lists can be defined in a way similar to Church numerals:
list(3) = Va.(f—a—a)—a—a

The first component of the list type, (f — a — a), corresponds to the cons constructor while the

second a to the nil value. For example, the list [1,2, 3] is given by
Aa. de:int—a—a. An:a.c1(c2(c3n))

The following are examples of list operations:

nil = Af.Aa. de:f—a—a. dn:a.n
cons = AB. Az : B Ar:list(f8). Aa. Ae: f—a—a. An:a.cz (r[a] ¢ n)
append = Apf. Az :list(f). Ay :list(f). Aa. Ac: f—a—a. An: a. z[a] ¢ (y[a] ¢ n)
map = AB. Ay Af:f—v. Az list(8). Aa. Ac:y—a—a. An:a.
zlal(Az:p. Arta.c(fz)r)n
filter = AB. Ap:f—bool. Az : list(8). Aa. Ac: f—a—a. An: a.
zlal](Az:p. Arta.(p2)a](czr)r)n
reverse = Af. Az :list(f). Aa. Ac: f—a—a. An:a.

zla—a]l(Az: . Arra—a. dw:a.r(czw)) (Aw:a. w)n

Binary trees are similar to lists, but with one more inductive occurrence of a in the type:

btree(f) = Voa.(a—a—a)—(f—a)—a

leaf = AB.dzx: 0. Aa. dn:a—a—a. Ad:f—a.dzx

node = Ap. Al: btree(3). Ar : btree(f). Aa. A\n:a—a—a. Ad: f—a.n (l[[a]nd) (r]a] n d)
flat = Ap. Az : btree(8). z[list(a)] (append[5]) (Ay : 8. cons[F] y (nil[F]))

Vectors can be represented as functions from integers to values. The vector type consists of this

function int — g along with an integer to indicate the size of the vector (not used here):

vector(3) = Va.(int—(int—pg)—a)—a

newvec = AB. Az :f. An:int. Aa. Ac:int—(int — ) —a. ¢ n (i :int. z)
sub = Ap. Az :vector(f). An :int. z[3] (As :int. Av rint — 3. v n)
update = AB. Az :vector(f). An :int. Ay : 8. z[vector()]

(As:int. Av :int — 3. Aa. Ac:int — (int — 3) —a. ¢ s (Ai :int. if[8] (eq n 1) y (v ©)))
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According to the Curry-Howard isomorphism between propositions and types, the type a — 3
corresponds to the proposition a = 3, while Va. t to universal quantification in predicate logic. As

in predicate logic, existential quantification can be defined in terms of universal quantification:
Ja.t = Vp.(VYa.t—p0)—p

Most algebraic datatypes can be modeled directly in Fy by using their Church encodings [13, 2].
The simplest type is the type Va. a that has no instances. The type () = Va. a — a (also called
the unit type) has exactly one instance, (), equal to the identity function Aa. Az : a. z. Booleans
can be represented as follows:

bool = Va.a—a—a

The first component, a, of the type corresponds to the true constructor, while the second compo-

nent. a, corresponds to the false constructor. In particular, the following macro definitions:

true = Aa.Adt:a. Af:a.t
if = Aa.Az:bool. Mt :a. Af 1 a.z[a]t f

define the true value and the if-then-else expression (of type Va. bool - a—a—a).

The product of the two types 3 and 7 is expressed in Iy as follows:

prod(8,v) = Va.(f—v—a)—a

Notice that prod is a macro that takes two arguments, § and 7 (i.e., # and v are macro parameters,
not type variables). (Recall that there are no user-defined type constructors in F5.) For example,
prod(bool,int) is a shorthand for Va. (bool — int — a) — a. The pair function that constructs a
pair of two values z : 8 and y : 7, and the functions that return the first and the second element of

a pair can be coded in the following way:

pair = AJ. Ay . Az: B . Ay:v. Aa. Ap:f—=y—a.pzy
fst = AB.Ay. Az :prod(8,7).z[B] (Af:B. As:v. f)
snd = AB.Avy. Az :iprod(B,7). z[y] (Af: . As:v.s)

Sums of types (i.e., union types) can be defined in a similar way:
sum(8,7) = Va.(B—a)—(7—a)—a

Integers are represented by Church numerals:

int = Va.(a—a)—a—a

zetro = Aa.As:a—a.Az:a.z

succ = Az:int. Aa. As:a—a. Az :a. s (z][a] s z)
plus = Az :int. Ay :int. z[int] succ y

times = Az :int. Ay :int. z[int] (plus y) zero

The first component of the int type, (a — a), corresponds to the successor function while the

second, a, to the zero value. The integer k is given by Aa. As : a — a. Az : a. s* z. That is, a



The operational meaning of programs in Iy is defined via reduction rules that constitute the

normalization algorithm of Fy:

(Az:t.e1)ea =5 [ea/z]er (B-reduction)

Az :it.ex =, € when z is not free in € (n-reduction)
(Av.e)t] =5 [t/v]e (type B-reduction)
Av.e[v] = e when v is not free in e (type n-reduction)

where [e5/2]eq is the term obtained by replacing each free occurrence of z in €1 by €5 and renaming
any bound variables in e; as necessary to prevent capture of free variables in €. In addition,

a-conversion allows us to change the variable name of a lambda or a type abstraction:

Az :t.e =, Ay:t.[y/z]e when y is not free in e (a-conversion)

Av.e =' Aw.[w/v]le when w is not free in e (type a-conversion)

It is known that all terms in Iy are strongly normalizable (no infinite reduction sequence; i.e.,
all programs in Iy terminate) and their normal form is unique (i.e., the normalization algorithm
satisfies the Church-Rosser property). (See [13] for a proof.)

The domain of a type t is the set D[t] given by the following two rules:

Dlti—t] = {f|VazeD[u]: (fz)eD[tz] } (1)
D[Vwv. 1] {az|Vt': 2[t'] e D[[t'/v]t] } (2)

If types are well-formed, the case D[v], where v is a type variable, will never appear since every
type abstraction is J-reduced in Rule 2. Note that the above two rules are not complete. For
example, according to Rule 2, D[Va. a] = { z | V¢ : z[t] € D[t] }. But it is well known that Va. a
has no instances, that is, its domain is empty. The actual models for Fy are quite complex and are
given elsewhere [11]. Here we are only using the above rules to prove the soundness of the typing

rules.
Theorem 1 The typing rules in Figure 1 are sound.

Proof: The proof is straightforward if the typing environment and the type judgments are translated

in the following way:
T[<>] = true
Tlz:t,I] = (ze€D[t]) = T[I]
T[T Fe:t] = T[] = (e €D[t])

Then, the typing rules become tautologies. For example, the (inst) rule is translated into:
(T[] = (e € D[Vv.t1])) = (T[] = (e[t2] € D[[t2/v]t1]))
which is true, if we consider the following;:

e € D[Yv.t1] = V' : €[t'] € D[[t'/v]t1] (from Eq. 2)
= €[tz] € D[[t2/v]t1] (by instantiating the universal quantification) O



r n= <> | z:t,T

€.€1,69 U= I Variable
€1 €9 Application
Az :t. e Abstraction

t,t1,ty = v Type variable
| Vw.t  Universal quantification

| t1—t2 Function Av. e Type abstraction

elt] Type instantiation
(var) T.z:t,T'Fz:t
Iz:t1Fe:ty The :t1—1t, They:ty

(abs) (appl)

I'F(Az:ty.e):t1—1 I'F (€1 €)1

I'Fe:t I'Fe:Vo.t
(poly) ‘ (inst) 1
I'F(Av.e):Vo. t I'F (e[t2]) = [t2/v]ta

Figure 1: Types and terms in Fy and the typing rules

The contribution of this paper is the extension of the type system of F5 to support types whose
instances satisfy commutativity and idempotent properties so that database collection types and
their operations can be coded without inconsistencies. We present a type system that enforces
the consistency of operations that involve different collection types, such as lists, bags, and sets.
Finally, we give a meaning to these extensions, which is used for proving the soundness of the
typing rules.

This paper is organized as follows: Section 2 gives the background for Reynold’s polymorphic
A-calculus, Fy. For a better and in depth treatment of this topic, we recommend Girard’s book on
proofs and types [13]. Section 3 presents the Fgp, calculus and its typing rules and presents a proof

sketch of the soundness of the typing rules.

2 The Second Order Polymorphic A-calculus

Figure 1 defines the second order polymorphic A-calculus, Fg, along with its typing rules. In
addition to these rules, there are the usual rules for testing the well-formedness of types (e.g..
that each type variable is bound by some universal quantification), which are omitted. We use
the metavariables e for expressions, t for types, v for type variables, and z for term variables.
Greek letters denote instances of type variables. The — type constructor is right associative while
application is left associative. Notice the difference between the two binding operators A and A: A
constructs functions from terms to terms, while A constructs functions from types to terms. The —
represents the type of a A, while V (sometimes called A) represents the type of a A. A term e has
type t if the type judgment I' - € : ¢ is derivable by the rules in Fig. 1 for some typing environment
I.



list. Even though, all the relational operations can be easily expressed using list iterators (as it
is done in [9] and [14]), these operations require that their inputs behave like bags (i.e., they are
not ordered). This restriction on the input values is not syntactic, but semantic: the type system
cannot tell whether the inputs to a relational operator contain duplicates or not, and therefore, it
cannot detect invalid programs.

The properties that make sets and bags different from lists are the commutativity and idempo-
tence properties. These properties cannot be enforced by the type system of I'y alone. Consequently,
we need to extend the type system of Iy so that inconsistencies, such as converting a set into a list,
are always detected during type-checking. More importantly, we need to give a meaning to these
type extensions.

According to the Curry-Howard isomorphism between propositions and types, a type corre-
sponds to a predicate and a type derivation to a proof in the predicate logic. Therefore, a type-
checking system is in a way a theorem prover that derives the principal type of an expression
the same way a theorem prover derives a proof. It also well-known that it is undecidable to prove
whether a function is commutative and/or idempotent [3] (information required for proving whether
a bag or set operation is valid). This implies that it would be undecidable as well to make such
validity tests during type-checking. Consequently, the type-checking system that we describe in this
paper is not complete. But, as we will demonstrate using examples, it can capture many common
database operations, including all relational and nested relational operations. More importantly,
our type system rejects all invalid operations, such as converting a set into a list. But. since our
system is not complete, there would be some operations that, even though valid, are rejected by
our type system.

In this paper, we introduce two new type constructors: one for commutative types and another
for types that are both commutative and idempotent. Our type-checking system annotates the
types that participate in these type constructors, and, during the type-checking of an expression,
it propagates these annotations throughout the expression until a conflict is detected. The com-
mutative and idempotent types have stronger annotations than the commutative types, and the
latter ones have stronger annotations than the plain types. A conflict would occur whenever an
annotation is found that is weaker than the one expected. If a conflict is detected, the expression
being typed-checked is rejected.

Our calculus is based on the second order polymorphic A-calculus (also called Fj), which ex-
tents Iy by adding polymorphism via type quantification. Fy was co-invented by Girard [13] and
Reynolds [21]. Tt is the basis for many modern functional programming languages that support
parametric polymorphism [5], such as SML [19]. We believe that ¥y is inappropriate for a database
calculus for two main reasons. First, once a value has been created of type (int —7—7)—>7—7
for some fixed type 7. this type 7 cannot be changed. Therefore, it will not be type correct to
iterate over this value twice, returning values of a different type 7. There are two solutions to this
problem: one is to use the untyped A-calculus, the other is to use a universal quantification over
7, that is, to use F3. Second, Iy cannot capture polymorphic operations, such as the list reverse
function that reverses any list of elements. The drawback is that F, has more complex semantics
than Fy.



A Polymorphic Calculus for Database Languages”

Leonidas Fegaras

Abstract

We present a new database calculus, Fg;,, which is based on Reynold’s polymorphic lambda
calculus. It supports two new type constructors that capture the commutativity and idempo-
tence properties of bags and sets. The type-checking rules for these extensions accept most valid
programs and filter out all inconsistent ones, including for example the programs that convert
bags into lists. We give the meaning of these type extensions and we prove the soundness of the

type-checking rules.

1 Introduction

The simply typed A-calculus (also called Fy), which was invented by Church [7], differs from the
untyped A-calculus in that it requires type annotations for lambda abstractions, Az : . e, where z
is a parameter of type ¢t and e is the function body. A recent work by Hillebrand et al [14, 15] uses
the simply typed A-calculus as a basis for a database language. In that language, collection types.
such as lists, are represented by their Church encoding, in the same way numbers are represented

by Church numerals. For example, a list of integers is represented in I'; by a value of type
(int—=7—7)=7—7

for some type 7, where the first component (int — 7 — 7) of this type corresponds to the type of the
list constructor cons (that constructs a list given an integer and a list), while the second component
T corresponds to the type of the nil value (that constructs the empty list).

It has been shown that any recursive algebraic datatype without a contravariant recursion can be
represented by a Church encoding [2]. The Church encoding of a datatype in a pure A-calculus (i.e.,
a A-calculus that does not support fix-points over types) is a higher-order type. An instance of such
a type is actually a program that performs computations over this type. For example, the Church
numerals are actually iteration schemes that can perform any primitive recursive computation.
There are already some programming languages (e.g., LEAPS [20, 17], ADL [16], and Charity [8])
as well as some database calculi (e.g., the fold algebra [9]) that are based on iteration instead of
recursion.

The main problem of representing sets and bags in F; using Church encodings is that they

become semantically equivalent to lists. Under this representation, one can convert a bag into a
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