A-DB: An ODMG-Based Object-Oriented DBMS*

Leonidas Fegarasf

1 Overview

The A-DB project at the University of Texas at Ar-
lington aims at developing frameworks and prototype
systems that address the new query optimization chal-
lenges for object-oriented and object-relational databas-
es, such as query nesting, multiple collection types,
methods, and arbitrary nesting of collections. We have
already developed a theoretical framework for query
optimization based on an effective calculus, called the
monoid comprehension calculus [4]. The system report-
ed here is a fully operational ODMG 2.0 [2] OODB
management system, based on this framework. Our
system can handle most ODL declarations and can pro-
cess most OQL query forms. A\-DB is not ODMG com-
pliant. Instead it supports its own C++ binding that
provides a seamless integration between OQL and C++
with low impedance mismatch. It allows C++ variables
to be used in queries and results of queries to be passed
back to C++ programs. Programs expressed in our
C++ binding are compiled by a preprocessor that per-
forms query optimization at compile time, rather than
run-time, as it is proposed by ODMG. In addition to
compiled queries, A-DB provides an interpreter that e-
valuates ad-hoc OQL queries at run-time.

The A\-DB system architecture is shown in Figure 1.
The A-DB evaluation engine is written in SDL (the
SHORE Data Language) of the SHORE object manage-
ment system [1], developed at the University of Wiscon-

This work is supported in part by the National Science
Foundation under grant IIS-9811525
2The University of Texas at Arlington, CSE, 416 Yates Street,
P.O. Box 19015, Arlington, TX 76019-19015
30regon Graduate Institute of Science & Technology, CSE,
20000 N.W. Walker Road P.O. Box 91000, Portland, OR 97291-
1000

Chandrasekhar Srinivasan'

Arvind Rajendrant David Maier?

sin. ODL schemas are translated into SDL schemas in
a straightforward way and are stored in the system cat-
alog. The A-DB OQL compiler is a C++ preprocessor
that accepts a language called A-OQL, which is C++
code with embedded DML commands to perform trans-
actions, queries, updates, etc. The preprocessor trans-
lates A-OQL programs into C++ code that contains
calls to the A-DB evaluation engine. We also provide
a visual query formulation interface, called VOODOO,
and a translator from visual queries to OQL text, which
can be sent to the A-DB OQL interpreter for evaluation.

Even though a lot of effort has been made to make
the implementation of our system simple enough for
other database researchers to use and extend, our
system is quite sophisticated since it employs current
state-of-the-art query optimization technologies as well
as new advanced experimental optimization techniques
which we have developed through the years, such
as query unnesting [3]. The A-DB OODBMS is
available as an open source software through the web
at http://lambda.uta.edu/lambda-DB.html.

2 Query Optimization in \-DB

Our OQL optimizer is expressed in a very powerful
optimizer specification language, called OPTL, and
is implemented in a flexible optimization framework,
called OPTGEN, which extends our earlier work on
optimizer generators. OPTL is a language for specifying
query optimizers that captures a large portion of the
optimizer specification information in a declarative
manner. It extends C++ with a number of term
manipulation constructs and with a rule language for
specifying query transformations. OPTGEN is a C++
preprocessor that maps OPTL specification into C++
code.

The A-DB OQL optimizer proceeds in eight phases:
1) parsing of OQL queries and translation from OQL
into calculus, 2) type checking, 3) normalization, 4)
translation into algebra and query unnesting, 5) join
permutation, 6) physical plan generation, 7) generation
of intermediate evaluation code, and 8) translation from

7 P [ODL
l \ _ schema
visual l
query
. formulation ODL
C++ code compiler

C++ code

C++ compiler]

D [' ODL

d 4 module
[—

evaluation
engine

[—
‘

catalog
manager

SDL
SHORE ‘

YOODOO: Visual Query Formulation for ODMG 0OL

B

S = 00L quety ||
(select ¥_D.nane fron ¥_0 in Instructors where (Fof L
rall %_2 in H_0.teaches: (exists ¥_3 in H_2.has_p
rerequisites: ¥_3.name = ‘cseB331”)))

i
show 0ogL | save
bag | Instructor
i Al | Cowrse &
soms orse
Persistent Root 1P
P| P [[T BE i =
[e R e o
?| Departents zle| s | AEET | K [
o« *g| ratk = n_ PG| ofted by =
ouses
== B[6] g [T P8 mgttpy o frand 331
) degt ?‘:mlﬂl B[8] i presegisite fox
e e
click the Teft mouse button for a menu

Figure 1: A-DB Architecture and the VOODOO Interface

intermediate code into C++ code, or interpretation of
the intermediate code.

Our calculus is called the monoid comprehension
calculus [4]. Tt captures most features of OQL and
is a good basis for expressing various optimization
algorithms concisely. It is based on monoids, a general
template for a data type, which can capture most
collection and aggregate operators currently in use for
relational and object-oriented databases.

One important component of our optimizer is a nor-
malization system for reducing expressions to a canoni-
cal form. Normalization simplifies the subsequent opti-
mization phases because it reduces the number of form-
s to be considered each time. In addition, normal-
ization removes many forms of query nesting, a pro-
cess also known as query decorrelation. All the other
forms of query nesting are removed by a very power-
ful method [3], which generalizes many unnesting tech-
niques proposed recently in the literature. In fact, our
system is capable of removing any form of query nesting
using a very simple and efficient algorithm. The simplic-
ity of our method is due to the use of the monoid com-
prehension calculus as an intermediate form for OODB
queries. The monoid comprehension calculus treats op-
erations over multiple collection types, aggregates, and
quantifiers in a similar way, resulting in a uniform way
of unnesting queries, regardless of their type of nesting.
Our unnesting algorithm is compositional, that is, the
translation of an embedded query does not depend on
the context in which it is embedded; instead, each sub-
query is translated independently, and all translations
are composed to form the final unnested query. Our
unnesting algorithm is efficient and easy to implement
(it is only 160 lines of C++ code). In addition to query
unnesting, A-DB converts path expressions into pointer

joins between class extents (when is possible) and it us-
es information about 1:N class relationships to convert
unnests into pointer joins between extents (by using the
inverse relationship).

If the comprehension calculus was to be interpreted
as is, the evaluation would proceed in a nested-loop
fashion, resembling the semantics of the calculus, which
gives an unacceptable performance for most non-trivial
applications. Research in relational query optimization
has already addressed the related problem of efficiently
evaluating join queries by considering different join
orders, different access paths to data, and different
join algorithms. To effectively adapt this technology to
handle our calculus, comprehensions must be expressed
in terms of algebraic operators, which, eventually,
will be mapped into physical execution algorithms,
like those found in relational database systems. This
translation is done in stages: queries in our framework
are first translated into monoid comprehensions, which
serve as an intermediate form, and then are translated
into a version of the nested relational algebra that
supports aggregation, quantification, outer-joins, and
outer-unnests. At the end, the algebraic terms are
translated into execution plans. We use both a calculus
and an algebra as intermediate forms because the
calculus closely resembles current OODB languages and
is easy to normalize, while the algebra is lower-level and
can be directly translated into the execution algorithms
supported by DBMSs.

A very important task of any query optimizer is
finding a good order to evaluate the query operations.
In the context of relational databases, this is known as
join ordering. A-DB uses a polynomial-time heuristic
algorithm, called GOO, that generates a “good quality”
order of the monoid algebra operators in the query

algebraic form. GOO is a bottom-up greedy algorithm
that always performs the most profitable operations
first. The measure of profit is the size of the
intermediate results, but it can be easily modified to
use real cost functions. GOO is based on query graphs
and takes into account both the output sizes of the
results constructed in earlier steps and the predicate
selectivities. It generates bushy join trees that have a
very low total size of intermediate results.

After the best evaluation order of operators is
derived, the algebraic form is mapped into an evaluation
plan by a rule-based rewriting system. Our system
considers the available access paths (indexes) and the
available physical algorithms to generate different plans.
During this phase, all alternative plans (for the derived
order of operators) are generated and costed and the
best plan is selected. Finally, each evaluation plan is
translated into an intermediate evaluation code that
reflects the signatures of the evaluation algorithms used
in A-DB (described in the next section). This code
can then be straightforwardly translated into C++ or
interpreted by the A-DB interpreter.

3 The Evaluation Engine

The A-DB evaluation engine is built on top of SHORE [1].

The only layer of SHORE used in our implementation
is SDL (the Shore Data Language) exclusively, because
we believe it is more resilient to changes than the Shore
Storage Manager and is easier to use. An alternative
would have been to write our own value-added serv-
er on top of the storage manager. A lot of effort has
been made to make the implementation of the evalu-
ation engine as simple as possible without sacrificing
performance. This required a very careful design. For
example, one of our design requirements was to put
all the evaluation algorithms in a library so that the
query evaluation code would consist of calls to these
algorithms. This sounds obvious enough and simple
to implement, but it required some special techniques
(described below) borrowed from the area of functional
programming.

Algebraic operators, such as R MR A—s.B S,
are intrinsically higher-order. = That is, they are
parameterized by pieces of code (ie. functions) that
specify some of the operation details. For the previous
join, the piece of code is the predicate R.A = S.B. If it
was to be implemented in C++, the join operator could
have been specified as

Relation join (Relation x,
Relation y,
bool (pred) (tuple,tuple))

where pred is the address of the predicate function.
The same holds for any evaluation plan operator, such
as the nested-loop join operator. If a query is to be

compiled into execution code with no run-time inter-
pretation of predicates, it should make use of higher-
order evaluation algorithms. The alternative (which is
adopted by commercial systems) is to define the evalua-
tion algorithms as kind of macros to be macroexpanded
and individually tailored for each different instance of
the evaluation operator in the query plan. For exam-
ple, the nested-loop join would have to be a function
with a ‘hole’ in its body, to be filled with the predicate
code. Then the entire code, the evaluation function and
the predicate, is generated and inserted inside the query
code. This is very clumsy and makes the development
and extension of the evaluation algorithms very tedious
and error-prone.

One very important issue to consider when writing
evaluation algorithms is stream-based processing of
data (sometimes called iterator-based processing or
pipelining). We would like to avoid materializing the
intermediate data on disk whenever it is possible. A-
DB pipelines all evaluation algorithms. Instead of using
threads to implement pipelining, as it is traditionally
done in most systems, we developed a special technique
borrowed from the area of lazy functional languages.
Each of our evaluation algorithms is written in such
a way that it returns a piece of data (one tuple) as
soon as it constructs one. To retrieve all the tuples, the
algorithm must be called multiple times. For example,
the pipeline version of the nested-loop join will have the
signature

tuple nested_loop (Stream sx,
Stream sy,
bool (pred) (tuple,tuple))

where Stream is a stream of tuples equipped with s-
tandard operations, such as first and next. In con-
trast to the regular nested-loop algorithm, this al-
gorithm exits when it finds the first qualified tu-
ple (that satisfies pred). To pipeline an algorithm,
we construct a suspended stream, which is a struc-
ture with just one component: an embedded function,
which, when invoked, it calls the evaluation algorith-
m to construct one tuple. For example, to pipeline
our nested-loop algorithm, we construct a suspend-
ed stream whose embedded function, F, is defined as
tuple F () { return nested_loop(sl,s2,pred); 1},
where s1 and s2 are the streams that correspond to the
join inputs and pred is the address of the predicate func-
tion. When a tuple is needed from a suspended stream,
its embedded function is called with no arguments to
return the next tuple. This is a clean and efficient way
of implementing pipelining. This type of evaluation re-
sembles lazy evaluation in functional programming lan-
guages. Here though we provide an explicit control over
the lazy execution, which gives a better handle of con-
trolling the data materialization on disk.

Currently, the A-DB evaluation engine supports table
scan of a class extent, index scan, sorting, nested-loop
join, indexed nested-loop join, sort-merge join, pointer
join, unnesting, nesting (group-by), and reduction (to
evaluate aggregation and quantifications). We are
planning to support block nested-loop join and hybrid
hash join in the near future.

The intermediate evaluation code, which is generated
from a query evaluation plan, is a purely functional pro-
gram that consists of calls to the evaluation algorithms.
The functional parameters of the calls (such as the pred-
icate function of the nested-loop join), are represented
as anonymous functions (lambda abstractions). If the
intermediate code is compiled into C++, the lambda
abstractions are translated into named C++ functions
by a simple defunctionalization process. If the inter-
mediate code is interpreted, each call to an evaluation
algorithm is executed without much overhead because
function addresses are stored into a vector and calls to
functions are dispatched in constant time by retrieving
the function directly from the vector. Lambda abstrac-
tions are interpreted by using the address of the inter-
preter itself as a parameter and by pushing the body of
the lambda abstraction into a special stack. This form
of dispatching makes the interpreter very compact (it is
400 lines of C++ code only) and very fast.

4 Highlights of the Demo

In our SIGMOD 2000 demo we will present the latest
version of A-DB . We will use a sample database that
is simple enough for the audience to understand in
few minutes but challenging enough to express some
interesting queries for showing the basic features of
our system. For a short demo, the audience will have
the chance to submit a number of ad-hoc OQL queries
either in text form or using our visual query formulator,
VOODOO. For those in the audience interested in query
processing and optimization, we will provide a visual
interface to display the most important phases and
results during the optimization of a query.

References

[1] M. Carey et al. Shoring Up Persistent Applications. In
SIGMOD’94, pp 383-394.

[2] R. Cattell et al. The Object Database Standard: ODMG
2.0. Morgan Kaufmann, 1997.

[3] L. Fegaras. Query Unnesting in Object-Oriented
Databases. SIGMOD’98, pp 49-60.

[4] L. Fegaras and D. Maier. Towards an Effective Calculus
for Object Query Languages. SIGMOD’95, pp 47-58.

