
- 1 -
Leonidas Fegaras, UTA SIGMOD’98

Query Unnesting in

Object-Oriented Databases

Leonidas Fegaras
U. of Texas at Arlington

- 2 -
Leonidas Fegaras, UTA SIGMOD’98

Various Approaches

Source-to-source transformations:
• unnesting SQL (Kim, Ganski, Muralikrishna)
• magic sets (Mumick & Pirahesh)

Evaluation techniques:
• query decorrelation (Seshadri et al)
• memoization (caching) (Hellerstein)

Algebraic approaches:
• algebraic equalities (Cluet & Moerkotte)
• normalization (Fegaras, Trinder, Wong, etc)

- 3 -
Leonidas Fegaras, UTA SIGMOD’98

Our Approach

is purely algebraic.

Formalism: monoid comprehensions
 (NF2 + aggregation + quantification)

It treats nested collections, aggregation, and quantification in
the same way.

Many forms of query nesting are removed by normalization;
the rest are removed by a simple, compositional, algorithm.

- 4 -
Leonidas Fegaras, UTA SIGMOD’98

Monoids

A monoid is an algebraic structure that captures many
collection and aggregate types:

(⊕, Z⊕)
The merge function ⊕ is associative with zero Z⊕:

x ⊕ Z⊕ = Z⊕ ⊕ x = x

A parametric type (e.g. set(a)) is associated with a free
monoid that has a unit U⊕:

(⊕, Z⊕ , U⊕)
It is called a collection monoid.
Any other monoid is a primitive monoid.

- 5 -
Leonidas Fegaras, UTA SIGMOD’98

Collection monoids:

set(a): (∪, {}, λx. {x})
bag(a): (∪, {}, λx. {x})
list(a): (++, [], λx. [x])

Primitive monoids:

integer: (+, 0)
integer: (*, 1)
boolean: (∨, false)
boolean: (∧, true)

Some Monoids

+

- 6 -
Leonidas Fegaras, UTA SIGMOD’98

Monoid Comprehensions

A monoid comprehension takes the form:

⊕{ e | r1, …, rn }

where ⊕ is a monoid and each qualifier ri is either:
• a generator v ← u, or
• a filter pred.

head qualifiersaccumulator

- 7 -
Leonidas Fegaras, UTA SIGMOD’98

Examples

∪{ (a,b) | a ← [1,2,3], b ← {4,5} }
= { (1,4), (1,5), (2,4), (2,5), (3,4), (3,5) }

+{ a | a ← [1,2,3], a ≥ 2 }
= 2+3 = 5

∪{ (a,b) | a ← x, b ← y }

res = {};
for each a in x do
 for each b in y do
 res = res ∪ {(a,b)};
return res;

- 8 -
Leonidas Fegaras, UTA SIGMOD’98

Translating ODMG OQL

select distinct hotel.price
 from hotel in (select h

 from c in Cities,
 h in c.hotels

 where c.name = “Arlington”)
 where exists r in hotel.rooms: r.bed_num = 3;

∪{ hotel.price | hotel ← ∪{ h | c ← Cities, h ← c.hotels,
 c.name = “Arlington” },

 ∨{ r.bed_num = 3 | r ← hotel.rooms } }

- 9 -
Leonidas Fegaras, UTA SIGMOD’98

Normalization

Canonical form:
⊕{ e | x1 ← path1, …, xn ← pathn, pred }

(path is a cascade of projections: X.A1.A2…Am)

Two important normalization rules:

⊕{ e | , x ← ⊗{ u | }, }
→ ⊕{ e | , , x ≡ u, }

⊕{ e | , ∨{ pred | }, }
→ ⊕{ e | , , pred, }

➀ ➁ ➂

➀ ➁ ➂

➀ ➁ ➂

➀ ➁ ➂

- 10 -
Leonidas Fegaras, UTA SIGMOD’98

Example

∪{ hotel.price
 | hotel ← ∪{ h | c ← Cities,
 h ← c.hotels,

 c.name = “Arlington” },
 ∨{ r.bed_num = 3 | r ← hotel.rooms } }

= ∪{ h.price | c ← Cities,
 h ← c.hotels,
 r ← h.rooms,

 c.name = “Arlington”,
 r.bed_num = 3 }

- 11 -
Leonidas Fegaras, UTA SIGMOD’98

Unnesting OQL Queries

select distinct hotel.price
 from hotel in (select h

 from c in Cities,
 h in c.hotels

 where c.name = “Arlington”)
 where exists r in hotel.rooms: r.bed_num = 3;

select distinct h.price
 from c in Cities,

h in c.hotels,
r in h.rooms

 where c.name = “Arlington”
 and r.bed_num = 3;

- 12 -
Leonidas Fegaras, UTA SIGMOD’98

Query Unnesting by Normalization

Normalization
• eliminates intermediate data structures;
• improves performance in many cases;
• has been shown to be effective in other domains (e.g. logic);
• allows the proof of useful theorems.

- 13 -
Leonidas Fegaras, UTA SIGMOD’98

But ...

Normalization cannot unnest all forms:

select distinct struct (D: d, E: (select distinct e
 from e in Employees
 where e.dno = d.dno))

 from d in Departments;

In comprehension form:

∪{ < D = d, E = ∪{ e | e ← Employees, e.dno = d.dno } >
 | d ← Departments }

- 14 -
Leonidas Fegaras, UTA SIGMOD’98

Is Query Unnesting Useful?

Query unnesting promotes the operators of the inner queries
into the operators of the outer query.
It allows:
• more choices of evaluating the inner operators;
• rearrangement (sorting) of all operators in one level;
• free movement of predicates between inner and outer

queries.

- 15 -
Leonidas Fegaras, UTA SIGMOD’98

Lessons from Relational Databases

select distinct d.name
 from Departments d
where 20 > (select count(e.ssn)

from Employees e
 where d.dno = e.dno);

select distinct d.dname
 from (Departments d left-outerjoin Employees e

 where d.dno = e.dno)
group by d.dno
having 20 > count(e.ssn);

- 16 -
Leonidas Fegaras, UTA SIGMOD’98

A Need for an Algebra

∪{ < D = d, E = ∪{ e | e ← Employees, e.dno = d.dno } >
 | d ← Departments }

∆∪{ < D = d, E = m > }

Γd
∪{ e }

m

ed

Departments Employees

Reduce by ∪: form a set of tuples

Nest by d and form a set of e’s

Left outer-join

- 17 -
Leonidas Fegaras, UTA SIGMOD’98

Why both Algebra and Calculus?

The calculus
• is higher-level and uniform;
• has a solid theoretical basis;
• closely resembles OODB languages;
• is easy to normalize.

The algebra
• is lower-level;
• can be directly translated into physical algorithms;
• is a better basis for query unnesting.

- 18 -
Leonidas Fegaras, UTA SIGMOD’98

Monoid Algebra

σp (R) = ∪{ r | r ← R, p(r) }
R ><p S = ∪{ (r,s) | r ← R, s ← S, p(r,s) }

µp
path(R) = ∪{ (r,s) | r ← R, s ← path(r), p(r,s) }

∆p
⊕/e(R) = ⊕{ e(r) | r ← R, p(r) }

Γp
⊕/e/f

(R) = ∪{ (f(r), ⊕{ e(s) | s ← R, f(r)=f(s), p(s) })
 | r ← R }

Other operators:

R =><p S left outer-join

=µp
path(R) outer-unnest

- 19 -
Leonidas Fegaras, UTA SIGMOD’98

Example of Query Unnesting

Find all students who have taken all DB courses:

∪{ s | s ← Students,
 ∧{ ∨{ t.cno = c.cno | t ← Transcript, t.id = s.id }
 | c ← Courses, c.title = “DB” } }

∆∪/s

s

Students

n

true

∆∧/ m

c

Courses

n

σc.title=“DB”

t.id=s.id ∧ t.cno=c.cno

∆∨/true

t

Transcripts

mA
B C

- 20 -
Leonidas Fegaras, UTA SIGMOD’98

∆∪/s

s

Students

n

true

∆∧/ m

c

Courses

n

σc.title=“DB”

t.id=s.id ∧ t.cno=c.cno

∆∨/true

t

Transcripts

mA
B C

∆∪/s

s

Students

n

true

Γs
∧/m

c

Courses

n

σc.title=“DB”

t.id=s.id ∧ t.cno=c.cno

Γc
∨/true

t

Transcripts

m

- 21 -
Leonidas Fegaras, UTA SIGMOD’98

∆∪/s
n

Γs
∧/m

n

Γc
∨/true

m

true

c

Courses

σc.title=“DB”

Students

t.id=s.id ∧ t.cno=c.cno

t

Transcripts

∆∪/s
n

Γs
∧/m

n

Γc
∨/true

m

t.cno=c.cno

c

Courses

σc.title=“DB”

Students

t.id=s.id

t

Transcripts

ss

- 22 -
Leonidas Fegaras, UTA SIGMOD’98

Translating Calculus to Algebra

Query unnesting is done during the translation from calculus
to algebra. The translation

• is simple & compositional;
• requires 9 rules only (2 for unnesting);
• is linear to the query size;
• is sound and complete

 (for NF2 + aggregation + quantification).

It is the first query unnesting algorithm proven to be complete.

What about bag and list comprehensions?

- 23 -
Leonidas Fegaras, UTA SIGMOD’98

Implementation and Performance

A prototype OQL optimizer already in existence at UTA:
http:/ /www- cse.uta.edu/~fegar as/op timiz er/

The unnesting algorithm has been tested:
• on random ODL schemas;
• on random nested queries (in comprehension form)

containing 2 to 29 inner queries.

The only optimization allowed was pushing predicates down
the query tree (but not from outer to inner queries).
Result: the scaled cost improvement gained by query

unnesting is exponential to the number of inner queries!

- 24 -
Leonidas Fegaras, UTA SIGMOD’98

Conclusion

I have presented:
• a calculus based on comprehensions;
• a normalization algorithm that unnests many forms of nested

comprehensions;
• a lower-level algebra that reflects many DBMS physical

algorithms;
• a translation algorithm from calculus to algebra that unnests

the remaining forms of query nesting.

