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Various Approaches

Source-to-source transformations:
• unnesting SQL (Kim,  Ganski, Muralikrishna)
• magic sets (Mumick & Pirahesh)

Evaluation techniques:
• query decorrelation (Seshadri et al)
• memoization  (caching) (Hellerstein)

Algebraic approaches:
• algebraic equalities (Cluet & Moerkotte)
• normalization (Fegaras, Trinder, Wong, etc)
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Our Approach

is purely algebraic.

Formalism:  monoid comprehensions
        (NF2 + aggregation + quantification)

It treats nested collections, aggregation, and quantification in
the same way.

Many forms of query nesting are removed by normalization;
the rest are removed by a simple, compositional, algorithm.
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Monoids

A monoid  is an algebraic structure that captures many
collection and aggregate types:

( ⊕,  Z⊕ )
The merge function ⊕ is associative with zero  Z⊕:

x ⊕ Z⊕  = Z⊕ ⊕ x  =  x

A parametric type (e.g. set(a)) is associated with a free
monoid that has a unit  U⊕:

( ⊕, Z⊕ , U⊕ )
It is called a collection monoid.
Any other monoid is a primitive monoid.
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Collection monoids:

set(a): ( ∪,  {},  λx. {x} )
bag(a): ( ∪,  {},  λx. {x} )
list(a): ( ++,  [ ],  λx. [x] )

Primitive monoids:

integer: ( +, 0 )
integer: ( *, 1 )
boolean: ( ∨, false )
boolean: ( ∧, true )

Some Monoids

+
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Monoid Comprehensions

A monoid comprehension takes the form:

⊕{ e | r1, …, rn }

where ⊕ is a monoid and each qualifier  ri  is either:
• a generator  v ← u, or
• a filter  pred.

head qualifiersaccumulator
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Examples

∪{ (a,b)  |  a ← [1,2,3],  b ← {4,5} }
= { (1,4), (1,5), (2,4), (2,5), (3,4), (3,5) }

+{ a  |  a ← [1,2,3],  a ≥  2 }
=  2+3  =  5

∪{ (a,b)  |  a ← x,  b ← y }

res = {};
for each a in x do
      for each b in y do
             res = res ∪ {(a,b)};
return res;
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Translating ODMG OQL

select distinct hotel.price
  from hotel in ( select h

     from c in Cities,
   h in c.hotels

    where c.name = “Arlington” )
 where exists r in hotel.rooms:  r.bed_num = 3;

∪{  hotel.price |  hotel ← ∪{  h |  c ← Cities, h ← c.hotels,
      c.name = “Arlington”  },

    ∨{  r.bed_num = 3 |  r ← hotel.rooms  } }
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Normalization

Canonical form:
⊕{ e |  x1 ← path1, …, xn ← pathn, pred }

(path is a cascade of projections:   X.A1.A2…Am)

Two important normalization rules:

⊕{ e |             , x ← ⊗{ u |              },              }
→   ⊕{ e |             ,              ,  x ≡ u,             }

⊕{ e |             ,  ∨{ pred |              },              }
→   ⊕{ e |             ,              ,  pred,             }

➀ ➁ ➂

➀ ➁ ➂

➀ ➁ ➂

➀ ➁ ➂
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Example

∪{  hotel.price
  |  hotel ← ∪{  h |  c ← Cities,
                               h ← c.hotels,

            c.name = “Arlington”  },
   ∨{  r.bed_num = 3 |  r ← hotel.rooms  } }

=  ∪{  h.price | c ← Cities,
                        h ← c.hotels,
                        r ← h.rooms,

     c.name = “Arlington”,
                        r.bed_num = 3 }
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Unnesting OQL Queries

select distinct hotel.price
  from hotel in ( select h

     from c in Cities,
   h in c.hotels

    where c.name = “Arlington” )
 where exists r in hotel.rooms:  r.bed_num = 3;

select distinct h.price
  from c in Cities,

h in c.hotels,
r in h.rooms

 where c.name = “Arlington”
    and r.bed_num = 3;
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Query Unnesting by Normalization

Normalization
• eliminates intermediate data structures;
• improves performance in many cases;
• has been shown to be effective in other domains (e.g. logic);
• allows the proof of useful theorems.
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But ...

Normalization cannot unnest all forms:

select distinct struct ( D: d, E: ( select distinct e
        from e in Employees
      where e.dno = d.dno ) )

 from d in Departments;

In comprehension form:

∪{ < D = d, E = ∪{ e |  e ← Employees,  e.dno = d.dno } >
   |  d ← Departments }
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Is Query Unnesting Useful?

Query unnesting promotes the operators of the inner queries
into the operators of the outer query.
It allows:
• more choices of evaluating the inner operators;
• rearrangement (sorting) of all operators in one level;
• free movement of predicates between inner and outer

queries.
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Lessons from Relational Databases

select distinct d.name
 from  Departments d
where  20 > ( select count(e.ssn)

from Employees e
          where d.dno = e.dno );

select distinct d.dname
 from ( Departments d  left-outerjoin Employees e

 where d.dno = e.dno )
group by d.dno
having 20 > count(e.ssn);
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A Need for an Algebra

∪{ < D = d, E = ∪{ e |  e ← Employees,  e.dno = d.dno } >
   | d ← Departments }

∆∪{ < D = d, E = m > }

Γd
∪{ e }

m

ed

Departments Employees

Reduce by ∪: form a set of tuples

Nest by d and form a set of e’s

Left outer-join
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Why both Algebra and Calculus?

The calculus
• is higher-level and uniform;
• has a solid theoretical basis;
• closely resembles OODB languages;
• is easy to normalize.

The algebra
• is lower-level;
• can be directly translated into physical algorithms;
• is a better basis for query unnesting.

- 18 -
Leonidas Fegaras, UTA              SIGMOD’98

Monoid Algebra

σp (R)             =  ∪{ r  |  r ← R,  p(r) }
R ><p S =  ∪{ (r,s) |  r ← R,  s ← S,  p(r,s) }

µp
path(R) =  ∪{ (r,s) |  r ← R,  s ← path(r),  p(r,s) }

∆p
⊕/e(R) =  ⊕{ e(r) |  r ← R,  p(r) }

Γp
⊕/e/f

(R) =  ∪{ ( f(r), ⊕{ e(s) |  s ← R,  f(r)=f(s), p(s) } )
        |  r ← R }

Other operators:

R =><p S left outer-join

=µp
path(R) outer-unnest
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Example of Query Unnesting

Find all students who have taken all DB courses:

∪{ s |  s ← Students,
           ∧{  ∨{  t.cno = c.cno |  t ← Transcript,  t.id = s.id }
             |  c ← Courses,  c.title = “DB” } }

∆∪/s

s

Students

n

true

∆∧/ m

c

Courses

n

σc.title=“DB”

t.id=s.id ∧ t.cno=c.cno

∆∨/true

t

Transcripts

mA
B C
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∆∪/s
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Translating Calculus to Algebra

Query unnesting is done during the translation from calculus
to algebra. The translation

• is simple & compositional;
• requires 9 rules only (2 for unnesting);
• is linear to the query size;
• is sound and complete

 (for   NF2 + aggregation + quantification).

It is the first query unnesting algorithm proven to be complete.

What about bag and list comprehensions?
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Implementation and Performance

A prototype OQL optimizer already in existence at UTA:
http:/ /www- cse.uta.edu/~fegar as/op timiz er/

The unnesting algorithm has been tested:
• on random ODL schemas;
• on random nested queries (in comprehension form)

containing 2 to 29 inner queries.

The only optimization allowed was pushing predicates down
the query tree (but not from outer to inner queries).
Result: the scaled cost improvement gained by query

unnesting is exponential to the number of inner queries!
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Conclusion

I have presented:
• a calculus based on comprehensions;
• a normalization algorithm that unnests many forms of nested

comprehensions;
• a lower-level algebra that reflects many DBMS physical

algorithms;
• a translation algorithm from calculus to algebra that unnests

the remaining forms of query nesting.


