Query Unnesting in Object-Oriented Databases

Leonidas Fegaras
U. of Texas at Arlington

Various Approaches

Source-to-source transformations:
• unnesting SQL (Kim, Ganski, Muralikrishna)
• magic sets (Mumick & Pirahesh)

Evaluation techniques:
• query decorrelation (Seshadri et al)
• memoization (caching) (Hellerstein)

Algebraic approaches:
• algebraic equalities (Cluet & Moerkotte)
• normalization (Fegaras, Trinder, Wong, etc)
Our Approach

is purely algebraic.

Formalism: monoid comprehensions

(NF² + aggregation + quantification)

It treats nested collections, aggregation, and quantification in the same way.

Many forms of query nesting are removed by normalization; the rest are removed by a simple, compositional, algorithm.

Monoids

A *monoid* is an algebraic structure that captures many collection and aggregate types:

\[(\oplus, Z_{\oplus}) \]

The merge function \(\oplus \) is associative with zero \(Z_{\oplus} \):

\[x \oplus Z_{\oplus} = Z_{\oplus} \oplus x = x \]

A parametric type (e.g. set(a)) is associated with a free monoid that has a *unit* \(U_{\oplus} \):

\[(\oplus, Z_{\oplus}, U_{\oplus}) \]

It is called a *collection monoid*.

Any other monoid is a *primitive monoid*.
Some Monoids

Collection monoids:
- set(a): \((\cup, \{\}, \lambda x. \{x\}) \)
- bag(a): \((\cup, \{\}, \lambda x. \{x\}) \)
- list(a): \((++[, \lambda x. [x]]) \)

Primitive monoids:
- integer: \((+, 0) \)
- integer: \((*, 1) \)
- boolean: \((\lor, \text{false}) \)
- boolean: \((\land, \text{true}) \)

Monoid Comprehensions

A monoid comprehension takes the form:

\[\varnothing \{ e | r_1, \ldots, r_n \} \]

where \(\varnothing \) is a monoid and each qualifier \(r_i \) is either:
- a generator \(v \leftarrow u \), or
- a filter \(\text{pred} \).
Examples

∪\{ (a,b) \mid a \leftarrow x, \ b \leftarrow y \}

res = \{ \};
for each a in x do
 for each b in y do
 res = res ∪ \{(a,b)\};
return res;

∪\{ (a,b) \mid a \leftarrow [1,2,3], \ b \leftarrow \{4,5\} \}
= \{ (1,4), (1,5), (2,4), (2,5), (3,4), (3,5) \}

+\{ a \mid a \leftarrow [1,2,3], \ a \geq 2 \}
= 2+3 = 5

Translating ODMG OQL

select distinct hotel.price
from hotel in (select h
 from c in Cities,
 h in c.hotels
 where c.name = "Arlington")
where exists r in hotel.rooms: r.bed_num = 3;

∪\{ hotel.price \mid hotel \leftarrow \{ h \mid c \leftarrow Cities, h \leftarrow c.hotels,
c.name = "Arlington" \},
\forall\{ r.bed_num = 3 \mid r \leftarrow hotel.rooms \} \}
Normalization

Canonical form:
\[\oplus \{ e | x_1 \leftarrow \text{path}_1, \ldots, x_n \leftarrow \text{path}_n, \text{pred} \} \]
(path is a cascade of projections: \(X.A_1.A_2\ldots A_m \))

Two important normalization rules:

\[\oplus \{ e | x \leftarrow \text{\textbullet} \{ u | \text{\textbullet} \}, \text{\textbullet} \} \rightarrow \oplus \{ e | x \equiv u, \text{\textbullet} \} \]

\[\oplus \{ e | x \leftarrow \lor \{ \text{\textbullet} | \text{\textbullet} \}, \text{\textbullet} \} \rightarrow \oplus \{ e | x \equiv \text{\textbullet}, \text{\textbullet} \} \]

Example

\[\cup \{ \text{hotel.price} \]
\[| \text{hotel} \leftarrow \cup \{ h | c \leftarrow \text{Cities}, \]
\[h \leftarrow c.\text{hotels}, \]
\[c.\text{name} = \text{“Arlington”}, \}
\[\lor \{ \text{r.bed_num} = 3 | r \leftarrow \text{hotel.\text{rooms}} \} \}
\]

\[= \cup \{ \text{h.price} | c \leftarrow \text{Cities}, \]
\[h \leftarrow c.\text{hotels}, \]
\[r \leftarrow h.\text{rooms}, \]
\[c.\text{name} = \text{“Arlington”}, \]
\[\text{r.bed_num} = 3 \} \]
Unnesting OQL Queries

```sql
select distinct hotel.price
from hotel in ( select h
    from c in Cities,
    h in c.hotels
    where c.name = "Arlington"
) where exists r in hotel.rooms: r.bed_num = 3;

select distinct h.price
from c in Cities,
    h in c.hotels,
    r in h.rooms
where c.name = "Arlington"
    and r.bed_num = 3;
```

Query Unnesting by Normalization

Normalization
- eliminates intermediate data structures;
- improves performance in many cases;
- has been shown to be effective in other domains (e.g. logic);
- allows the proof of useful theorems.
But ...

Normalization cannot unnest all forms:

```sql
select distinct struct ( D: d, E: ( select distinct e
    from e in Employees
    where e.dno = d.dno ) )
from d in Departments;
```

In comprehension form:

```sql
∪ { < D = d, E = ∪{ e |  e ← Employees, e.dno = d.dno } > | d ← Departments }
```

Is Query Unnesting Useful?

Query unnesting promotes the operators of the inner queries into the operators of the outer query.

It allows:

- more choices of evaluating the inner operators;
- rearrangement (sorting) of all operators in one level;
- free movement of predicates between inner and outer queries.
Lessons from Relational Databases

\[
\text{select distinct d.name}
\from \text{Departments d}
\where 20 > (\text{select count(e.ssn)}
\from \text{Employees e}
\where d.dno = e.dno);
\]

\[
\text{select distinct d.dname}
\from (\text{Departments d left-outerjoin Employees e}
\where d.dno = e.dno)
\group by d.dno
\having 20 > \text{count(e.ssn)};
\]

A Need for an Algebra

\[
\cup \{ < D = d, E = \cup \{ e | e \leftarrow \text{Employees, } e.dno = d.dno \} > \mid d \leftarrow \text{Departments} \}
\]

- Reduce by \(\cup \): form a set of tuples
- Nest by \(d \) and form a set of \(e \)'s
- Left outer-join
Why both Algebra and Calculus?

The calculus
• is higher-level and uniform;
• has a solid theoretical basis;
• closely resembles OODB languages;
• is easy to normalize.

The algebra
• is lower-level;
• can be directly translated into physical algorithms;
• is a better basis for query unnesting.

Monoid Algebra

\[\sigma_p(R) = \cup \{ r \mid r \leftarrow R, \ p(r) \} \]
\[R \bowtie_p S = \cup \{ (r,s) \mid r \leftarrow R, \ s \leftarrow S, \ p(r,s) \} \]
\[\mu_p^\text{path}(R) = \cup \{ (r,s) \mid r \leftarrow R, \ s \leftarrow \text{path}(r), \ p(r,s) \} \]
\[\Delta_p \oplus/e(R) = \bigoplus \{ e(r) \mid r \leftarrow R, \ p(r) \} \]
\[\Gamma_p^{\oplus/e/f}(R) = \cup \left\{ (f(r), \bigoplus \{ e(s) \mid s \leftarrow R, \ f(r)=f(s), \ p(s) \} \right\) \mid r \leftarrow R \} \]

Other operators:
\[R \Rightarrow_p S \quad \text{left outer-join} \]
\[= \mu_p^\text{path}(R) \quad \text{outer-unnest} \]
Example of Query Unnesting

Find all students who have taken all DB courses:

\[\cup \{ s \mid s \leftarrow \text{Students}, \\land \{ \lor \{ t.\text{cno} = c.\text{cno} \mid t \leftarrow \text{Transcript}, t.\text{id} = s.\text{id} \} \mid c \leftarrow \text{Courses}, c.\text{title} = \text{"DB"} \} \}\]
Translating Calculus to Algebra

Query unnesting is done during the translation from calculus to algebra. The translation

• is simple & compositional;
• requires 9 rules only (2 for unnesting);
• is linear to the query size;
• is sound and complete
 (for \text{NF}^2 + aggregation + quantification).

It is the first query unnesting algorithm proven to be complete.

What about bag and list comprehensions?
Implementation and Performance

A prototype OQL optimizer already in existence at UTA:
http://www-cse.uta.edu/~fegaras/optimizer/

The unnesting algorithm has been tested:
• on random ODL schemas;
• on random nested queries (in comprehension form)
 containing 2 to 29 inner queries.

The only optimization allowed was pushing predicates down
the query tree (but not from outer to inner queries).
Result: the scaled cost improvement gained by query
unnesting is exponential to the number of inner queries!

Conclusion

I have presented:
• a calculus based on comprehensions;
• a normalization algorithm that unnests many forms of nested
 comprehensions;
• a lower-level algebra that reflects many DBMS physical
 algorithms;
• a translation algorithm from calculus to algebra that unnests
 the remaining forms of query nesting.