1

A Uniform Calculus for Collection Types

Leonidas Fegaras
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
20000 N.W. Walker Road P.O. Box 91000
Portland, OR 97291-1000

email: fegaras@cse.ogi.edu

Abstract

We present a new algebra for collection types based on monoids and monoid ho-
momorphisms. The types supported in this algebra can be any nested composition of
collection types, including lists, sets, multisets (bags), vectors, and matrices. We also
define a new calculus for this algebra, called monoid comprehensions, that captures
operations involving multiple collection types in declarative form. This algebra can
easily capture the semantics of many object-oriented database query languages that
support mixed collection types, such as the OQL language of the ODMG-93 standard.
In addition, it is ideal for expressing data parallelism and nested parallelism and can
be effectively translated onto many parallel architectures.

We present a normalization algorithm that reduces any expression in our algebra to
a canonical form which, when evaluated, generates very few intermediate data struc-
tures. These canonical forms are amenable to a higher degree of parallelism than the
original programs. The normalization algorithm generalizes some well-known algebraic
optimization techniques and heuristics used in relational query optimization. Finally,
we extend this algebra by incorporating object-oriented features, such as object identity
and destructive updates.

Introduction

1.1 Motivation

New research directions in database programming languages are guided by the desire to
support multiple collection types in a single framework. It is essential for such a framework
to treat collections uniformly in a simple and extensible language. The primary interest of
these approaches is the bulk manipulation of collection types. Bulk operations not only need
to have enough expressive power to perform complex computations, but they need to be

effectively translated into efficient execution plans as well.



There are many proposals for complex object algebras that are aimed at a universal
theory of collection types. We classify these approaches into two categories: algebras dealing
with stream forms and algebras dealing with decomposed forms of data. An operator imposes
a stream view of a collection if it processes the collection one element at a time. The stream
form has been very effective in evaluating set operations in relational databases and it is ideal
for expressing pipeline processing. An operator imposes a decomposed view of a collection
if it divides the collection into a number of subcollections that are processed independently.
Data decomposition supports divide-and-conquer computations, which allow independent
parallelism.

Higher-order generic operators, such as map and filter, are an effective way for capturing
traversals over collection structures. Each such operator characterizes the control structure of
an algorithm, while the instantiations of its functional parameters characterize the “policy”
that elaborates the algorithm. By abstracting the policy details from an algorithm, we can
express laws about all the algorithms with the same control structure. These laws may not be
apparent when we examine these algorithms in their fully instantiated form. By restricting
the set of allowable operators to a small, but powerful, set of higher-order operators, we
reduce the number of transformation rules needed for optimizing expressions that involve
these operators. This restriction results in a system whose correctness is easier to ascertain.

This paper presents a query algebra that includes only one higher-order generic operator,
namely the monoid homomorphism, which processes collections in decomposed form. In
contrast to other approaches [3. 5], we are not so much concerned about the expressive
power and the complexity of our language (even though it can be easily proved that our
algebra is more expressive than NF?, the nested relational algebra). Instead, this operator
was introduced to provide a precise semantics to the algebra, in such a way that all invalid
programs can be easily detected at compile time. Moreover, we wanted an algebra that
captures the semantics of most object-oriented database languages, especially the Object
Query Language (OQL) of the ODMG-93 standard [8]. Finally, and more importantly, we
wanted an algebra that facilitates query optimization and processing. Even though our
algebra cannot express non-polynomial time operations, such as powerset and transitive
closure, it can easily capture NF*-style operations that involve different collection types in
a uniform way.

1.2 Overview of the Calculus

We have presented previously an expressive and extensible algebra based on fold opera-
tions [9, 17, 10] that processes data in stream form. Given any user-defined data type
expressed by inductive type equations, this system is able to synthesize the definition of the
fold operator for this type by simply examining the type details. The fold operator follows a
pattern of recursion similar to the pattern of recursion in the type definition. Furthermore,
this system is able to generate the necessary transformation theory to optimize expressions
that involve the synthesized operator. For example, the list type constructor is defined by
the following inductive equation:

list(a) = Nil | Cons of a X list(a)



where a is a type parameter and Nil and Cons are value constructors. The fold operator for
lists is defined as follows:

foldh:St(e,acc) Nil = ¢ _
fold"**(e, acc) (Cons(a,z)) = acc(a,fold"™ (e, acc)x)

Value ¢ in fold"(e, acc) is the initial seed of the accumulation and acc is a binary function
that accumulates each list element to the seed. That is, when fold"*(e, ace) is applied to the
list [aq,...,a,], it computes the value

acc(ay, ace(az, ... acc(ay,€)))

This expression can be evaluated by an incremental computation that captures a pipeline:
the list elements form a stream of values that flows through the pipe (starting from the last
element a, and proceeding to the first element ay). For example,

append(z,y) = fold"* (y, Ma,r).Cons(a,r)) z

That is, if = [ay, ..., a,]. then append(z.y) is

Pipelining is an effective evaluation technique for stream forms of data. Similarly, inde-
pendent parallelism [15] is effective for decomposed forms of data and for divide-and-conquer
computations. One way to capture such computations is to use structural recursion [3, 5, 4].
For example, an alternative construction of list values uses three primitives: nil [], singleton
[a] for an element a, and list append. That way lists are processed in decomposed form. The
list structural recursion is defined as follows:

Hom'™ (¢, £ acc) [ =
Homhft(e, f.ace)ld] = f(a) ' .
Homlm(é, f.ace) (append(z1,x9)) = GCC(HOmllst(E: frace) zq, Homl“t(Q . ace) xy)

where ace is an associative function (i.e., Va,y.z : acclace(x,y), z) = acc(z, ace(y, z))) with
identity e (i.e., Vo : acc(e, ) = ace(x,e) = z). Let T be the output type of the operator
Hom"*(e, f, acc). This operator constructs values of type T in the same way as list values
are constructed, but with e substituted for [], f(«a) for [a], and ace for append. In categorical
terms, we say that both (list, [],append) and (7', €, acc) are monoids (because of the associa-
tivity and identity laws), and that Hom"*' is a monoid homomorphism from the former to
the latter monoid. This operation captures a divide-and-conquer computation since any list
x = [ay,...,a,| can be divided into two lists z; and x5 such that @ = append(zy, z2). In that
case, operation Hom'™!(e, f, acc) z is equal to acc(Hom'™ (e, f, acc) zy, Hom' (e, f, acc) x,).
These two recursive calls can be evaluated in parallel. Since ace is associative. it does not
matter how we split the computations into parallel processes and how we accumulate the
result values, as long as we accumulate them from left to right. If in addition acc is com-
mutative, as in the case of all set operations, then the results of the computation can be
accumulated in any fashion.



One computation of Hom'*!(e, f, acc) z is fold"**(e, A(a,r).acc(f(a),r)) z, which means
that homomorphisms can form pipelines too. But there are better ways of computing homo-
morphisms. For example, in a Connection Machine [12], we can feed the list x = [ay, ..., a,]
into n processors X[1],..., X|[n] and evaluate the program

for all £ in parallel do
if £ > n then X[k] « ¢ else X[k]«+ f(X[k]);
for i1+ 1 to [log,n] do
for all £ in parallel do
if (k— 1)mod?2’ = 0 then X[k] < acc(X[k], X[k + 271]);

This computation evaluates Hom"*' (e, f, acc) z as a balanced binary tree. The tree leaves are
the values f(a;) and the internal nodes are applications of acc. Since the depth of the tree is
[log, n| and all computations at each level are performed in parallel, the entire computation
is performed in [log,n] 4+ 1 steps. This computation is a data parallel computation [2,
18, 1] since each value a; of z is fed into a different processor X[i]. If the number of
available processors is less than n, then each processor is assigned more than one element
and the homomorphism is evaluated partially as a pipeline and partially as a data parallel
computation [26]. If in addition function f is another homomorphism, then we will have a
nested parallelism [1].

The focus of this paper is object-oriented database languages based on divide-and-
conquer computations. We provide an extensible library of monoids that capture many
collection types, such as strings, lists, sets, multisets, vectors, and matrices. In addition,
this library includes monoids that capture basic types, such as integers and booleans. A
monoid homomorphism in our algebra is from one monoid to another. where both monoids
are defined in this library. For example, the homomorphism that maps a list into a set is

homllist, set](f)z = Hom™ (), f,U) x

That is, if 2 is the list [aq, . .., a,], then hom[list, set]( f) x computes the set f(ai)U---Uf(ay,).
For example, the following algebraic operation joins the list  with the multiset y and
returns the set of all pairs (r, s) that satisfy r.A = s.A, where r is an element of = and s is

an element of y:
hom(list, set](Ar. hom[bag, set](As. if r.A = s.Athen {(r.s)} else {})y)z
Another example is the length of a list  computed by:
hom[list, sum](Ar.1) x

where sum is the integer monoid whose merge function is + and whose zero element is 0.
That is, if = [ay, ..., a,], then this expression computes 1 +---4+1 = n, which is the length
of z. That is, we provide a uniform algebra in which we can express operations that involve
different collections as well as aggregates and predicates. This uniform treatment of bulk

operators allows us to perform algebraic optimizations that involve complex predicates and



aggregates, such as the translation of a nested SQL query into a join. This translation would
not be as straight-forward if we had chosen an algebra in which predicates were treated
differently from the other bulk operations.

On top of this algebra we define our calculus, which is based on monoid comprehensions.
For example, one valid expression in the calculus is

set{ (a,b)|a+[1,2,3], b« 4,5} }

This expression joins the list [1,2,3] with the multiset {4,5} and returns the following set
(it is a set because the comprehension is tagged by the word set):

{(174)7 (1:5)7 (2:4)7 (2:5)7 (3:4)7 (375)}

Another example is
sum{a|a<1[1,2,3],a>2}

which returns 5, the sum of all list elements greater than or equal to 2.

Our calculus is equivalent to our algebra. It can serve as a database language since it does
not require higher-order functions, which usually make programs hard to read. Programs
expressed in our calculus are far easier to understand than the equivalent algebraic forms.
Even though all the program transformation algorithms described in this paper are applied
to algebraic forms only, most of our examples are expressed in the calculus.

1.3 Translating Object-Oriented Queries into the Calculus

The monoid comprehension calculus is an ideal calculus for many object-oriented query lan-
guages that support multiple collection types. Even though the tuple relational calculus and
the relational algebra do not capture commercial relational languages very well (since they
do not support aggregates, grouping, and sorting) our calculus and algebra capture precisely
the semantics of most database languages. For example, the Object Query Language (OQL)
of the ODMG-93 standard [8] can be translated directly into the monoid comprehension
calculus. Consider for example the following ODMG-93 schema:

Cities : set({name : string,
hotels : bag((name : string, rooms : list((bed# : int,...)),...)),
places_to_visit : list((name: string,...))))

¢

where ‘... represents some omitted details. The following OQL query finds all hotels in

Portland which are also interesting places to visit:

select distinct ~2.name
from cin Cities,
hin c.hotels,
pin c.places_to_visit
where c.name = “Portland” and ~.name = p.name



Notice that variable i ranges over c.hotels, where ¢ ranges over Cities. Since Cities is a set
of tuples where each tuple has an attribute hotels which is a bag of hotels, then we have
the nested collection of a set of bags. The output of this query returns a set of hotel names.
Therefore, this query implicitly flattens this set-of-bags. Notice also that ¢ ranges over a
set. h ranges over a bag, and p ranges over a list, while the output of the query is a set. If
all collection types in the schema were sets, then this query could be expressed in NF2-style
algebraic form as follows:

map(flatten(map(filter(Cities, Ac. c.name = “Portland”),
Ac. join(c.hotels, c.places_to_visit,

A(h, p). h.name = p.name))),
A(h, p). h.name)

Even though there are ways of translating SQL-like queries over nested sets into NF? form
(as is done in the SHORE project [21]), these approaches become infeasible when multiple
collection types are introduced. First, the number of required algebraic operators increases
dramatically. For example, if we had n collection types we would need n? different join oper-
ators, since we may need to join two different collection types and return another collection
type. Second, we will need n? coercion operators to map one collection type to another.
Finally, increasing the number of operators will increase the number of transformation rules
required for optimizing queries.

Consider now how the above OQL query is expressed in our monoid comprehension
syntax:

set{ h.name| ¢ - Cities, h « c.hotels, p+ c.places_to_visit,
c.name = “Portland”, h.name = p.name }

which is directly translated into the following algebraic form:

hom([set, set](Ae.hom[bag, set|(Ah.hom[list, set](Ap. if cname = “Portland”
and h.name = p.name
then {h.name} else {})
c.places_to_visit)
c.hotels)
Cities

Even though this form resembles a nested-loop join (if it were to be evaluated naively), we
will see that in fact there are ways of translating such forms into efficient joins, such as merge
joins and hash joins.

Consider now the following OQL query that finds all hotels in Portland that have at
least one room with three beds:

select 2.name
from hlin (select c.hotels
from cin Cities
where c.name = “Portland”),

hin hl

where exists r in h.rooms : (r.bed# = 3)



This query is expressed in the comprehension syntax as:

bag{ h.name | hl < bag{ c.hotels | ¢ < Cities, c.name = “Portland” },
h < hl, some{r.bed# = 3|r« h.rooms } }

where some is the monoid with false as the zero element and V (the boolean disjunction
operator) as the merge function. That is, if h.rooms = [ry,...,r,], then

some{ r.bed# = 3| r<h.rooms} = (ri.bed# =3)V---V (r,.bed# = 3)

We will see that by adopting this uniform syntax for joins, predicates, and aggregates, we can
easily optimize nested OQL queries, in which the restriction predicate of a select-from-where
query contains another select-from-where query.

The monoid calculus can be easily extended to capture object identity. In fact, object
identity is just another monoid. For example, one valid object-oriented comprehension is

list{lz |z [new(l),new(2)], z:=lz + 1}

which first creates a list of two new objects (new(1) and new(2)) of type list(obj(int)).
Variable = ranges over this list (i.e., z is of type obj(int)) and the state of z is incremented
by one (by z :=!z + 1). The result of this computation is the list [2,3]. An object-oriented
comprehension is translated into a state transformer that will propagate the object heap
(which contains bindings from object identities to object states) through all operations in an
expression, and will change it only when there is an operation that creates a new object or
modifies the state of an object. This translation captures precisely the semantics of object
identity without the need of extending the base model. It also provides an equational theory
that allows us to do valid optimizations for object-oriented queries. The same technique is
used for optimizing destructive updates.

In [24] a normalization algorithm was presented for reducing monad comprehensions
to a canonical form. A nice property of canonical forms is that their evaluation generates
very few intermediate data structures that regularly need to be garbage-collected after they
are used. Following this work, Section 3 presents a normalization algorithm for monoid
comprehensions. While there are many algebras with operators that can work on mixed
collections, such as general monoid homomorphisms [3. 5, 4] and folds [9], our calculus is
the first calculus that can do so in a uniform framework. Furthermore, our normalization
algorithm can normalize all expressions in the calculus. This is not possible for monoid
homomorphisms in general.

The normalization algorithm is used in Section 4 for optimizing queries. Since non-
canonical terms are suboptimal in most cases, we ignore all non-canonical forms during
database optimization and search the space of equivalent canonical forms only. This heuris-
tic reduces the optimization search space considerably. In addition, Section 4 expresses
database storage structures and algorithms for joins, including merge join, hash join, and
hash-partitioned join. In this area, monoid homomorphisms are superior to folds, because
structures such as sorted lists and hash tables can be represented directly as monoids. Sec-
tion 5 is focused on vector and matrix manipulations. These data structures deserve special



T zero[T] | unit[T'](a) | merge[T] | C/1
list [] [a] append

set {} {a} U CI
bag 0 o | v |
ordered-set {I} {lal} 5 I
string n "a" concat

Table 1: Examples of Free Monoids

consideration since they occur very often in scientific applications. Section 6 integrates
object-oriented features, such as object identity, into the base language. Section 7 extends
the basic algebra with destructive updates and provides operational semantics to these ex-

tensions. Finally, Section 8 presents some of the related work.

2 The Theoretical Framework

2.1 Monoids

Definition 1 (Monoid) Let T be a type, zero[T] a value of type T', and merge[T| a function
of type (T x T)—T. The triple (T, zero[T], merge[T]) is a monoid of type T if merge[T] is
associative with (left and right) identity zero[T].

If merge[T] is a commutative (i.e., Y,y : merge[T](z,y) = merge[T](y,z)) and/or idem-
potent function (i.e., V& : merge[T]|(x,z) = z), then the monoid (T, zero[T], merge[T]) is a
commutative and /or idempotent monoid.

Definition 2 (Free Monoid) Let T'(a) be a type determined by the type parameter o (i.e.,
T is a type constructor) and (T(a), zero[T], merge[T]) be a monoid. The quadruple

(T'(a), zero[T], unit[T], merge[T'])
where unit[T] is a function of type a —T(«a), is a free monoid*.

Table 1 presents some examples of free monoids. The letters C and I indicate that the monoid
is a commutative and/or an idempotent monoid. The monoids list, bag, and set capture the
well-known collection types for linear lists, multisets, and sets [5]. The monoid ordered-set
captures lists with no duplicates. The operator U is defined as follows: zly = append(z, z —
y), where x — y is the list # without any elements from y. e.g. {2.5,3,1}U{[3.2,6]} =
{[2.5,3,1.6]}. The monoid string captures vectors of any type. It is mostly used for express-
ing character strings. Section 5 describes a better monoid for complex vectors.

*To be more precise, unit[T] should satisfy the universal mapping property (uniqueness property) that
for any f: a— S(a) there is a unique function hom[T, S](f) (given in Definition 5) such that hom[T" S](f) o
unit[7] = f.



T type || zero[T'] | unit[T](a) | merge[T] | C/1
sum || int 0 a + C
prod || int 1 a * C
max || int 0 a max CI
some || bool false a \% CI
all bool true a A CI

Table 2: Examples of Simple Monoids

We will use the shorthand T{eq,..., €n } to represent the construction

merge[T']|(unit[T](e1), . ... merge[T](unit[T](e,), zero[T]))
In particular, we will use the following shorthands:

le1, ... 60] = list{er,....en}  {er,....en} = bag{er,....en}

{e1,....e,} = set{er,....e,} "ep..o.e," = string{c, ..., }

where ¢; is a character.

One monoid that captures natural numbers is (int,0,+). Since the int type is not
parametric, the int unit could be a constant value (e.g. 1) instead of a function. In that
case, the int monoid will be freely generated by the constant value 1. Here though we adopt
a different approach (so that monoid comprehensions can return integer values):

Definition 3 (Simple Monoid) The quadruple (T,zero[T], unit[T], merge[T]), where
(T, zero[T], merge[T]) is a monoid and unit[T] is the identily function id = Azx.x of type
T — T, is a simple monoid.

The drawback of this approach is that natural numbers must now be built-in, since they
cannot be generated from the int primitives alone. Table 2 gives examples of simple monoids.
Every simple monoid should be associated with an underlying type (int and bool here), since
instances of simple monoids cannot be generated from the monoid primitives alone; instead
they need values of some kind to generate new values. Note also that all simple monoids
should be commutative.

In our treatment of programs we will consider only the following types to be valid:

Definition 4 (Monoid Type) A monoid type has one of the following forms:

T (T is a simple monoid)
T (prtype) (T is a free monoid and priype is int, bool, or char)
T (type) (T is a free monoid)
(ay: t1, ..., ay: t,) (arecord type)
where type and tq, .... 1, are monoid types.



That is, collection types can be freely nested.

Records of type (ay : t1, ..., a, : t,) are constructed by expressions of the form (a; =
€1, ..., Gy = €,). A component a; of a record = can be extracted by using either a;(z) or
z.a;. We will use the shorthand

t1 Xty = <7T1 : tl, o ! t2>
to capture pairs. For example, set(string(char) x bag(int)) is a legitimate type.
Theorem 1 A monoid type is a monoid.

Proof: (by induction) If type = T is a simple monoid, then the statement is true. If type =
T (prtype) where T is a free monoid and prtype is int, bool, or char, then, zero[type] = zero[T],
unit[type] = unit[T], and merge[type| = merge[T]. If type = T'(t) where T is a free monoid,
then

zero[T(t)] = zero[T
unit[7'(¢)](x) unit[7](unit[t](x))
mergelT(1)](z,y) = merge(T)(z. )

If type is a record, then

zero[(ay : ty, ..., an: t,)] = (a; =zero[t1], ..., a, = zero[t,])
unit[{ay : ty, ..., an: )] ({ar = v1, ..oy an = vy))
= (ay = mit[ts](v1), ..., a, = unit[t,](v,))
merge[(ay : b1, ..., an: ty)]({ar =21, oo, an = x0). (a1 = Y1, ooy An = Yn))
= (a; = merge[t1](z1, 1), ..., a, = merge[t,|(z,,yn)) -

For example, if type = set(string(char) x bag(int)), then

weroltypd = ()
unitflypel(z,y) = {("=" {y})}
merge[type] = U

since pairs are records with unit[t; x to](ay, az) = (unit[ts](a1), unitfta](az)).

When there are no ambiguities, we will use the notation 7" and 7T o S instead of T'(type)
and T'(S(type)), where T and S are free monoids, if type can be inferred from context.

We define the mapping ¢ from monoid names to the set {C. 1} as: C € (T) iff T' is
commutative and [ € (7 iff T' is idempotent. Note that (7' 0 S) = ¢(T). The partial

order between monoid names =< is defined as:
S 2T & P(S) Cy(T)

For example, ‘list” < ‘bag” < ‘set’ since set is commutative-idempotent, bag is commutative
but not idempotent, and list is neither commutative nor idempotent.

10



CI (set)

N

(bag, sum) C I (ordered-set)

N7

(list)
Figure 1: Restriction Lattice for Homomorphisms

2.2 The Algebra and the Calculus

Definition 5 (Homomorphism) A homomorphism hom[7,S] from the free monoid
(T'(a), zero[T], unit[T], merge[T]) to the monoid (S,zero[S], merge[S]), where T < S, has
type (a = S)—=T(a)— S and it is defined by the following inductive equations:

hom|[T', S|(f) zero[T] = zero[S]
hom[T', S](f) (unit[T](a)) = fla)
hom([7', 5](f) (merge[T)(z,y)) = merge[S](hom[T’, 5](f) 2, hom([T’, S](f)y)

The condition T" < S is very important. If the free monoid 7" is a commutative and/or
idempotent monoid, then so must be S (see also Figure 1). For example, bag cardinality
hom[bag, sum](Az.1) is a valid homomorphism, while set cardinality hom[set, sum](Az.1) is
not (since 4 is commutative but not idempotent). Without this restriction we would have

(see also [5]):
1 = hom|set, sum](Azx.1){a}
= hom[set, sum|(Az.1)({a} U {a})
= hom[set, sum|(Az.1){a} + hom[set, sum](Az.1){a} =

The following are examples of valid monoid homomorphisms:

image(f)z = hom[set set|(Aa{f(a)}) =

ecx = hom|[set, some|(Aa.(a =¢€))x

filter(p)z = hom|set, set](Aa.if p(a)then{a} else{})x
length(z) = hom[list, sum|(Aa.l)z

11



Definition 6 (Monoid Comprehension) A  comprehension over the monoid
(T, zero[T], unit[T'], merge[T']) is defined by the following inductive equations:

T{e|} = unit[T](e)
T{e|lz+u,7} = hom[S.T|(Az.T{e|7})u (where u has type S(a))
T{e|pred, 7} = ifpred then T{e|T} else zero[T

where T is a (possibly empty) sequence of terms (of the form x < u or pred) separated by
commas, and u is an expression of type S(a), where S is a free monoid with S <X T.

While the monoid 7' of the output is specified explicitly, the free monoid S associated with
the expression u in = < u is inferred. This process is similar to type inference. Note that
the type T' that tags a comprehension may be a composition of monoids. In that case, as we
have seen earlier, the unit function is the composition of the unit functions of the constituent
monoids while the zero and merge functions are the zero and merge functions of the outer
monoid. For example, (set o list){ e | e« [1,2] } returns {[1], [2]}.

Terms of the form x < u in a comprehension (as in the second equation) are called
generators while terms of the form pred (as in the third equation) are called guards or filters.
We will use the shorthand T{e|x < u, 7} for T{e|x < [u], T}, where [u] is the list with
one element u. Terms of the form = <= u are called bindings since they bind the variable z
to u. For example, some{z =y|z < 3, y < 4} is false.

The monoid comprehensions for T' = set are similar to the tuple relational calculus
queries. For example, the join of two sets x and y is defined as:

join(f.p)(z,y) = set{ fla.b)|a=z by, pla,b)}
and it is equal to:
hom([set, set](Aa.hom[set, set](Ab.if p(a,b) then {f(a,b)} else {})y)x
But we can also use comprehensions to join different collection types. For example,
set{ () |2 [1,2), y o {3,4,5}}
returns {(1,3). (1. 4), (1,5). (2.3).(2.4). (2.5)}.

Another example is nest” (k) z:
set{(k(e),s)| ez, s = T{ala+ =z, k(e)=k(a)}}

For example,

nest'(id) [1,2,2,3,1] = {(1,[1,1]),(2,[2,2]). (3, [3])}

If = is a set, then nest®*(k)z is equivalent to the nesting operator for nested relations.

Similarly?
unnestT(;L') = T{e|(k,s)x, es}
tWe allow generators to take the form (a1 = e1,...,a, = €p) u:
T{e|{a1=¢€1,....an =€en)u, 7} = T{e|veu, e <vay,....enp <v.an, T}

For example, T{e|(a,b)«u, T} = T{e|véeu, a < muv, b< mu, T}

12



Other examples:

filter(p)(z) = set{e|e<z, p(e)} (x is a set, a list, or a bag)
flatten(z) = set{e|s<x, e<s} (x is a set of sets)

rNy = set{ele«x,ecy} (x andy are sets, lists, or bags)
length(z) = sum{l|e+z} (x is a list or a bag)

sum(zx) = sum{e|e+uzx} (2 is a list or a bag of int)
count(z,a) = sum{l|e<z,e=a} (z isa list or a bag)

a€x = some{a=clecx} (xis aset, alist, or a bag)
da€exr:e = some{e|la+z} (x is a set, a list, or a bag)
Vacx:e = all{elaz} (z is a set, a list, or a bag)

Expression sum(z) adds the elements of any x of type T'(int), where T' < ‘int’. For example,
sum([1,2,3]) = 6. Expression count(z,a) counts the number of occurrences of a in the bag
z. For example, count({1,2,1},1) = 2.

Monoid comprehensions are more expressive than monad comprehensions [23]. For ex-
ample, set{z|x<[1,2,1] } is a valid monoid comprehension that translates the list [1,2,1]
into the set {1,2}, but it is not a valid monad comprehension. This is a consequence of
the fact that a monoid homomorphism is a generalization of the flattenmap (the monad
extension operator [23]), since flattenmap’ (f) = hom[T, T](f). In contrast to flattenmap,
a monoid homomorphism can map one type to another type, allowing us to mix different
types in the same computation. Notice also that list{ x|z« {1,2}} is not a valid monoid
comprehension while sum{ x|z <+ {1,2} } is. That is, if one of the generators in a monoid
comprehension is over a commutative and/or idempotent monoid, then this comprehension
must be over a commutative and/or idempotent monoid. This condition could be checked
by the type inference system and report errors to users, since the commutativity and idem-
potence properties of a monoid are specified explicitly when this monoid is defined (by the
¥ function).

Definition 7 (Monoid Algebra) A monoid term is defined in Figure 2, where v is a vari-
able name, ¢ is a constant (i.e., true, false, an integer, or a character'c’), names starting
with € represent monoid terms, and names starting with t represent monoid types. The no-
tation o F e : t indicates that the monoid term e has type t under the substitution o. The
substitution list o binds variable names to types. Fquations 9, 10, and 11 are for a free
monoid T'(a) bul similar equations can be expressed for a simple monoid (by substitulting T

for T(a), T(t), and t).

Definition 8 (Monoid Calculus) A comprehension term is similar to a monoid term bul
with the Equation 12 of Figure 2 replaced by the equation

Opy1m et

for a free monoid T'(a), where n >0, o1 = o, and each a; is either

13



olti/v]F e tq

okbec: T (1)
ok Xvtte: ty >t
okFv:o(v) (2)
ochbel:t1 =ty o ey iy
ocber:t.okeo:t ok ei(es): ta
(3)

otk e =es: bool

ok zero[T]: T(a)

(4) ockbe:t
o Funit[T](e) : T(t)

(5) obe :T{), obes: T(1)
o F merge[T](e1, e2) : T(%)

ocbe;:bool, obes:t, obeg:t

(6) obey: T(t), oft/v]F e S(t), TXS
o F hom[T, S](Av.e1) ea : S(1)

octif e; theneselsees: t

Figure 2: The Monoid Algebra

e a generalor v;<—€;, where o; F e; 0 Si(t;), Si X T, and 041 = o4[ti/vi], or
o «a fillter €;, where o; - €; : bool and 0,41 = 0o;.
Similarly, a comprehension of a simple monoid T s

Opgr1me: T

From the equivalence
hom[T, S](f)z = S{alvez, as f(v)}
if S is a free monoid and
hom[T, S|(f) e = S{f(v)]vea}
if S is a simple monoid, and from Definition 6 we have the following theorem:

Theorem 2 The monoid algebra is equivalent to the monoid calculus.

3 Normalization of Monoid Terms

In this section we are concerned with normalizing the monoid algebra into a simplier canon-
ical form. There are four reasons for doing this. First. it is easier to prove general theorems

14



(Av.er)ea ~  erfea/v] (beta reduction)
(a1 =€1,...,a, = €,).0; ~ €
(hom[T, (ay : t1,...,a, : t,)](f) €).a; ~ hom|[T,t;](a;o f)e

g(if e; theneselsees) ~ ife; theng(e;) else g(es)

(where g is either a projection or a hom)
hom[T, S](f) zero[T] ~ zero[S]
hom [T, S](f) (unit[T)(c)) ~ f(c)
hom[T, S](f) (merge[T)(c1,€2)) ~ mergelS](hom[T. S]() 1, hom[T, S](f) e2)
)

hom[S, R](f) (hom[T, S](g)e) ~ hom[T, R](hom[S, R](f)og)e

Figure 3: The Normalization Algorithm for Homomorphisms

about properties of algebraic programs if these programs are reduced to canonical forms.
Second, non-canonical terms are suboptimal in most cases. Therefore, a good heuristic for
database optimization is to ignore all non-canonical forms and search the space of equivalent
canonical forms for the one with the minimum estimated cost. Normalization reduces the
optimization search space considerably. Third. the evaluation of canonical forms generates
less intermediate data structures, which need to be garbage-collected after they are used.
Finally, normalized programs are amenable to a higher degree of parallelism.

The normalization algorithm in Figure 3 maps the monoid algebra into a canonical
monoid algebra. This canonical algebra is similar to the monoid algebra described in Figure 2
with the exception of Equation 12: a monoid homomorphism takes the following form:

hom[S, T|(f) path

where path is either name (the name of a bound variable) or path.name (where name is an
attribute name of a record).

It is trivial to prove the soundness of the normalization algorithm (i.e., that all trans-
formations are meaning preserving). For example, Rule 20 can be proved by induction over
e (e can only take three forms: a zero, a unit, or a merge). It is also easy to see why there
are no monoid homomorphisms after normalization other than those described above: if a
monoid homomorphism is applied to a form other than a path, then this term is reduced to a
simplier form by the normalization algorithm. We can also prove that this rewrite system is
terminating and confluent (i.e., it satisfies the Church-Rosser property). That is, it does not
matter which sequence of rules are applied to a term as they all result to the same canonical
form.

The focus of the normalization algorithm is the last rule. It fuses two piped monoid
homomorphisms into a nested one. This transformation facilitates parallel processing since

15




piped homomorphisms require that the two monoid homomorphisms are performed in se-
quence, one after the other, even though each one may be evaluated in parallel. That is, the
inner homomorphism hom[7', S|(g) is computed first, constructing an intermediate result,
and then the outer homomorphism hom[S, R](f) is computed by consuming this intermedi-
ate result. These two computations can be fused into one parallel computation (i.e., into
one monoid homomorphism). This is achieved by the normalization algorithm.

For example, filter(p)(filter(q) x) is

hom([set, set](Ab.if p(b) then {b} else {})
(hom[set, set](Aa.if g(a) then {a} else{}) z)

~» hom[set, set](Aa.(hom|[set, set](Ab.if p(b) then {b} else {})
(if g(a) then {a} else{})) x (by Rule 20)

~» hom[set, set](Aa.if g(a) then (hom[set, set](Ab.if p(b) then {b} else {}){a})
else (hom[set, set](Ab.if p(b) then {b} else{}){}))z (by Rule 16)

~» hom[set, set](Aa.if g(a) thenif p(a) then {a} else{} else{})z (by Rules 17 and 18)
= filter(Aa.q(a) A p(a)) x

The normalization algorithm improves program performance in most cases. There are
two cases where the normalized programs may be less efficient than the programs before
normalization. The first case is when we have a monoid homomorphism applied to an
idempotent merge. For example, hom|[set, set](f) ({a} U {a}) = f(a) is more efficient than
its normalized form f(a) U f(a). This problem can be solved by using the rule: if T is
idempotent, then merge[T']|(e, €) ~ €, and by requiring that the input of a hom be normalized
before the hom itself (such as in a bottom-up rewriting strategy). The other case is when
a variable occurs more than once in a term (i.e., the term is nonlinear). In that case, the
beta reduction rule (Rule 13) will replace this variable with its bound term, producing a
duplicated computation. This problem can be solved by generating DAGs instead of trees
during beta reduction.

The normalization of the input of a homomorphism is a very important transformation
because it eliminates intermediate data structures. However, another use of canonical forms
is to recognize familiar patterns of expressions to translate them into efficient algorithms.
One such pattern is a select-from-where SQL query whose ‘where’ clause contain another
SQL query (i.e., this is a nested SQL query). We would like to transform such queries into
joins since joins can be evaluated very efficiently. To do this transformation in our framework,
we need to normalize if-then-else statements (since the ‘where’ clause of an SQL statement
is captured in our algebra by an if-then-else statement). Figure 4 extends the algorithm of
Figure 3 with rules that normalize if-then-else statements. It works for idempotent monoids
only (such as sets). Canonical if-the-else statements take one of the following forms:

if path then ¢, else ¢,
if e = €5 then ¢ else ¢4
that is, the condition of the if-then-else statement is normalized into a path or an equality

(or a comparison in general).

16



if truethene; elsee; ~ ¢

if falsethene; elseey ~ ey
ife; Veytheneselseey ~ ife;theneselseif e, theneselseey
ife; Aeytheneselseey; ~ ife;thenif ey theneselseeselseey

if (if e; then ey elsees) theneselsees ~» if e; thenif e; thene, elsees

elseif esthen e elsees

if hom[T, some](f) e thene; elsezero[S] ~» hom[T, S](Az.if f(z) then e, else zero[S]) e
(if S is idempotent)

if hom[T', all](f) ethene; elsee; ~ if hom[T, some](noto f) ethene; elsee;

Figure 4: The Normalization Algorithm for Conditionals

For example, consider the following nested OQL query:

select distinct r
from rin R
where r.Bin (select distinct s.D
from sin S

where r.C = 5.C)
which is expressed in the monoid calculus as:

set{r|r« R, some{x =r.Blzsel{s.D|s« S, rC=sC}}}

= hom[set, set](Ar.if (hom[set, some](Ax. z = r.B)
(hom[set, set](As.if r.C' = s.C'then {s.D} else {}) 95))

then{r}else{}) R
~» hom[set, set|(Ar.if (hom[set, some](As.if r.C = s.C thens.D = r.Belsefalse) 5)
then{r}else{}) R (by Rules 20 and 16)
~» hom[set, set](Ar.-hom|[set, set](As.if r.C = s.C then if s.D = r.Bthen {r} else {}

else{})S)R (by Rule 26)
= set{r|r«R, s« S, rC=sC,s.D=r.B}

Notice that this is a well-known transformation in relational systems that converts a nested
select-from-where statement into a join.

The normalization algorithm yields canonical programs that generate very few interme-
diate data structures. But there are other important program transformations that explore
the commutativity properties of monoids. In particular, if 7' is a commutative monoid, then

17




the following transformations are valid:

hom[S, T|(Ave.hom[R, T|(Avi.€) €1) €2 = hom[R, T|(Avi.hom[S, T](Ava.€) €2) €3
hom[S, T|(Av.if e; theneselsees) e = if e; thenhom[S, T|(Av.eq) e else hom|[S, T'](Av.e3) €

The first equation is valid only if term ¢; does not depend on v, and €, does not depend on
vy, and the second equation is valid only if €¢; does not depend on v. The first equation is
not a reduction. It corresponds to the join commutativity rule:

T{e|vi<e€1,va¢€3, T} = T{e|vaé—ey, V14 €1, T}

These rules can be used for generating alternatives during optimization. An optimizer should
generate and estimate the costs of all these alternatives.

4 Mapping Monoid Terms into Physical Algorithms

Monoids and monoid terms can capture the data types and operations in both the logical
and physical layers of a database. If a logical data type 7" is mapped into the physical storage
structure S, then there must be a function Rg 7 of type S —T' that maps any instance of the
storage structure S to an instance of type T'. That is, the mapping from logical to physical
must always be one-to-one or one-to-many. For example, sets can be implemented as lists
with Ryistset(x) = set{e|e < x } but not vice-versa. This mapping between types is called
type transformation [11].

If a logical operation f : (71 x --- x T,) = T is implemented by a physical algorithm
F: (S x -+ xS,)—So, then the following equation must be true:

RsymoF' = fo(Rs,1 % xRs,1,)

where the product of functions is (g1 x ¢2)(a,b) = (g1(a), g2(b)). U Rsr(z) =T{e|ez}
and Rrs(z) = S{e|e<x}, then F(xq,...,2,) is equal to

So{ele—f(Ti{elecar},.... T {elez,})}

That is, the implementation of any logical operation f expressed as a monoid term is exactly
this monoid term with S; substituted for 7;. (This also means that we substitute operators
like merge[S;] for merge[T;].) This approach requires that ¢(S;) = ¢(7;) and that the
mapping between S; and 7} is one-to-one.

Storage structures at the physical layer of a database can also be represented as monoids.
For example, Figure 5 defines the monoids for sorted lists and hash tables. The monoid
sorted[f](«), where type 3 in f: a— [ is an ordered type (i.e., a type with a partial order
<, such as the integer type), denotes a list of elements of type a ordered by f. It represents
a family of monoids, one for each function f. list_merge(f)(z,y) merges two ordered lists
z and y (both of type sorted[f](a)) into an ordered list of type sorted[f](a). The monoid
hashed|[f, n](a), where f: a—int and n : int, denotes a hash table of size n and hash key
f. Instances of this type could be constructed as vectors of n elements of type list(a). Each

18



free monoid T || zero® unit” (a) merge’ (z,y) C/1
sorted[f] [] [a] list_merge( f)(x,y) CI
hashed[f, n] empty_vector(n) | hash_unit(f,n)(a) | hash_merge(f,n)(z.y) | CI

Figure 5: Monoids for Physical Storage Structures

element € in the ith list satisfies 1 = f(e)modn. hash_unit(f,n)(a) creates a vector of n
lists, which all of them are empty except the f(a)modn list which is the singleton list [a].
Finally, hash_merge(f. n)(z,y) merges two hash tables x and y into a new hash table that
contains elements from both z and y.

If we implement sets as sorted[k] structures, then the implementation of join(f, p)(z,y) =

set{ f(a,b)|a+x, by, p(a,b)} is
sorted[k|{ f(a,b)|a+ X, b Y, p(a,b)}

where both X and Y are sorted[k] monoids. The resulting algorithm has the same behavior
as a merge join (even though its direct interpretation is still a nested loop). That is, it
joins two sorted lists into a sorted list. However, as we will see next, we only care about the
behavior and the cost model of a physical algorithm. A physical algorithm may implemented
by a very complex program written in a language like C. but the only information needed for
optimization is the algorithm’s functionality expressed by a monoid term (to get consistent
translations) and the cost model (to compare physical plans). The previous comprehension
has exactly the functionality of a merge join since for the same inputs they both yield the
same output.
Another implementation of join(f, p)(x,y) is

hashedlk,n]{ f(a.b)|a< X, b« Y, p(a,b) }

where now both X and Y are hashed[k, n] monoids. The resulting algorithm has the same
behavior as a hash-join. This ability of directly extracting the implementation of a logical
operation is characteristic of monoid terms. It makes database implementation very effective.
Lets now make these observations more formal:

Definition 9 (Physical Algorithm) A physical algorithm F' is a program (typically writ-
ten in an imperative language, such as C) associated with the monoid type T —T', with the
behavior f, where f is a monoid term of type T —T", and with a cost function that expresses
the cost of this program in terms of the costs of its domain values.

We will not give any formal definition of costs and of cost functions here. The physical layer
consists of an extensible library of physical algorithms. We will assume that any physical
algorithm F' maps each value v in T' into the value F/(v) = f(v) in T". The physical layer is
a trusted system where all physical algorithms are consistent with their behavior.

For example, merge join|ky, k;| is a physical algorithm with type

(sorted[k1](T}) x sorted[kq](T3)) — sorted[A(a, b).k1(a)](Ty x T3)

19



The behavior of merge_join[ky, ko] (z. y) is
sorted[Aa,b).ki(a)]{(a.b)|a+x, by, ki(a) = k(D) }

and its implementation could be a C procedure that evaluates a merge join. Another example
of a physical algorithm is hash_join[ky, k2, n] of type

(hashed[kq, n|(T1) x hashed[ks, n](T3)) — hashed[A(a, b).ki(a) + ko(b), n](T} x Ty)
Its behavior is equal to
hashed[A(a,b).ki(a) + k2(b), n]{ (a,b) |a+x, by, ki(a) = k(D) }

We will assume that all algorithm behaviors are reduced to canonical form by the nor-
malization algorithm before optimization. Query translation in our framework can be viewed
as a mapping from the monoid term f(z1,...,z,) that represents a query to the program
F(X1,...,X,), where each physical structure X; is the implementation of the logical struc-
ture z;. The program F(Xi,...,X,) consists of calls to physical algorithms in such a way

that the behavior of this program is equivalent to

Sofele—f(Ti{ele—= X1}, .., T.{ele< X, })}

Query optimization consists of the following steps. First, the above comprehension is normal-
ized to a canonical form. Then, alternatives are generated from the commutative monoids
(i.e., from join commutativity). Finally, the resulting canonical terms are pattern-matched
with the canonical behaviors of the physical algorithms, substituting subterms with the
proper calls to algorithms. Pattern-matching may sound inefficient but, because all terms
are in canonical form, it can be performed very fast. This is a crucial point that makes the
normalization process very important for query optimization. Note also that type checking
narrows the matching process further. The search process should consider all matching phys-
ical algorithms each time. Cost functions can be used for guiding and pruning the search as
well as for selecting the final best plan.
For example, we will map the collection type T'(«) into the type S(a, 3) = set( x T'(a))

using

Rrs(z) = nestl(k)x (for a function k:a—3)

Rsr(r) = unnest’(z)

where nest and unnest were defined on Page 13. This type transformation basically partitions
any collection into sets (equivalent classes) of collections whose elements have the same image
under k. That is, k£ is the partition function. Under this type transformation, an operation
T{a|a+x, by, ki(a) = kz(b) } has the following implementation:

nest? (k)(T{ a|a<+unnest?(X), b+ unnest’ (Y), k1(a) = ky(b) })

where X and Y are the implementations of z and y (i.e., they are already partitioned by kq
and k;) and the result will be partitioned by k. If there is an algorithm partitioned(f)(z,y)
with behavior

set{(k, f(r,s))|(k,r)+x, (m,s)«y, m=k}

20



—_—

{oln + ]| bli] <y })

vec[n +m

map(f)z = mal{(fb)[i,j]|ali] ==, b[j] = a}

transpose(z) = mat{b[j,¢]|a[t] =, b[j]+a}
inner(z,y) = sum{alafi]<z*xy}
multiply(z,y) = mat{v[i, ]| ali] <z, b[j] < transpose(y), v < inner(a, b) }
)

= sum{v|a[k] <z, b[l] <a, v < ct(x, k1) }
where ct(z,k, 1) = (=1)* % prod{b|afi]«z,i #k, b[j]<a,j #1}
inverse(z) = mat{vlk,l]|alk] <z, b[l]+a, v < (ct(z,k,[)/determinant(z)) }

determinant(z

subseq(z,n,l) = wvec[l[{a[i = n]|a)i]z,i>n} (i.e. z[il,i=n,....0+n—-1)
reverse(z) = wvecnl{aln —i—1]|a[i]+=x} (te. z[i]l,i=n.n—1,...,
zip(z,y) = wee[n]{(a,b)t]|a[i] =z, bljl+y. 1 =7} (i.e. (z[i],y[t]).i=1,...,
permute(z,p) = wvec[n|{a[b]|ali] =z, b[j]p. i =7} (i.e. z[p[i]],i=1,...,n)
concat(z,y) = merge[T](vec[n+ ml{a[t]|a[i] =},

mat = wvec[n]|(vec[m](sum)) (mat is the type of n x m integer matrices)

Figure 6: Examples of Vector Operations

then the above operation can be evaluated by the following algorithm:
partitioned(hash_join[ky, k2, n])( X, Y)

which actually implements a hash-partitioned join.

5 Vectors and Matrices

Vectors are very important collection types [13]. In contrast to other approaches. we will not
express vectors as monoids whose merge function is a simple vector concatenation. Instead
we will require that each vector has a fixed predefined size. We believe that such a view
considerably simplifies the vector manipulation programs and facilitates parallel processing.
Our work is closely related to Buneman’s work on arrays [6]. (He uses transpose and reshape
as array primitives.) We believe that our approach is simplier and more consistent with the
basic theory for the other collection types.

We introduce a new free monoid vec[n](T'), for some monoid 7" and some constant integer
n, to denote all vectors of size n with elements of type T'. The monoid vec[r](7T') has the
following primitives: (The unit function here is binary, but in functional languages any n-ary

21




function can be considered as a unary applied to a tuple.)
T) = (zero[T]....,zero[T]|) (n times)
unit{vee[n](T)](a. k)

merge[vec[n](T)]((ao, - - . an-1)), (bo. ..., bp_1])
= (lmerge[T](ao, bo), . ... merge[T](an—1,b,-1)])

zero[vece[n](T')]
] unit[7T](a) if ¢ = (kmodn)

) where €; = zero|T] otherwise

Il
o
R

o

where (|eg, .. ., €n—1]) constructs a vector of n elements. That is, the zero element of vec[n](T)

is a vector of n zeros; the unit takes two values a : 7" and k : int and constructs a vector

of n zeros, except of the Eth element which is set to a; the merge function uses merge[T] to
merge the two input vectors element-wise. For example,

zero[vec[4](int)] = (|0,0,0,0]
unitvec[4](int)](8.2) = (/0,0.8.0]
merge[vec[d)(int)]((0,1,2,0). (3.0,2,1)) = (0+3.1+0.2+2.0+1) = (3.1,4,1)

When there is no ambiguity, we will use merge[T'] for merging vectors instead of merge[vec[n](T)].
For example,

11,2 + (3. 4) — (4,6)

append ([T, 2], (31). 0141 (5.610) = ([1,2,41.[3.5,6])
The matrix addition of two matrices z and y of type mat = vec[m](vec[n|(sum)) is = + y,
since merge[mat] is merge[vec[n|(sum)], which is merge[sum], equal to +.

Figure 6 presents some examples of vector operations. Here we use the shorthand a[¢] for
(a,1)and a[i, 7] for ((a, 5),7). To understand map, notice that (f b)[¢, 5] = ((fb,7),7), which is
lifted twice by the comprehension into the matrix unit{vec[n](T)](unitjvec[m|(T)](fb.7),1),
since this comprehension is over a composition of monoids, and, therefore, the unit is a
composition of units. That is, the composed unit is a matrix with all zeroes, except the i
element, which is fb. In a parallel architecture, this computation could be distributed into a
matrix of processors (since it is a nested homomorphisms, which requires nested parallelism),
where each processor is dedicated to one matrix element.

6 Incorporating Object Identity

In this section we are concerned with incorporating impure features, such as object identity,
into our base language. To give operational semantics to such extensions, we need the ability
to pass the state (such as the object store) through all operations in a program. That is, each
value of type T' must be lifted into a function S— (7" x S) that will propagate (and possibly
change) the state s of type S to a new state s’. This function is called a state transformer.
That way, impure features can be simulated directly in a pure functional language. The
approach described here is inspired by Wadler’s work on monads and monad state trans-
formers [22, 23]. Our state transformers are equivalent to monad state transformers, but
they are better suited for monoids?.

‘In  particular,  merge[®(T)](f. g) = bindS(f, Az.bindS(g, Ay.As.(merge[T](z.y).s))). where

bindS(m, k) s = let val (a,s’) = (ms)inkas’end is the monad state transformer [22].

22



[e] = As.(e,s) (if € is first-order with no ‘new’ or ©=")
IfT = XaAs.(f(a),s) (if [ is second-order with no ‘new’ or “=’)
[(e1,e2)] = distro(id x [eq]) o [e1]
el = (Mas)Lfas)o ]
[Av.e] = Av.[e]
[if €1 then e; else €3] = (A(a, s).if a then [es] s else [es] s) o [e1]
[hom[R. T](Av.e)] = hom[R, ®(T)](Av.[€])
[new(s)] = (Ma, (L, H)).(ref” (n), (extend” (L, ref (n),a), H — {n}))) o [s]
(for some n € H)
[e:=s] = (AMp,(a, (L, H))).(true, (extend” (L, p,a), H))) o (id x [s]) o [€]
[l = \(p. (L. H).(lookup™ (L. p). (1. H))) o []

Figure 7: Translation of the Monoid Algebra Extended with Object Identity

Definition 10 (Monoid State Transformer) Let (T, zero[T], merge[T]) be a monoid. The
triple (®(T'), zero[®(T)], merge[®(T)]) in which

o(T) = S—(TxY5)
zero[®(T')] = As.(zero[T], s)
merge[®(T)](f,g) = (merge[T] x id)odistro (id x g)o f

where distr(a, (b,¢)) = ((a,b), ¢), is called a monoid state transformer.

Function merge[®(T)](f, g) returns an ®(7T') value by chasing the following diagram:

merge[T]xid
—

SLTXSMTX(TXS)M(TXT)XS T xS

In ML, merge[®(T)](f. g) can be computed as follows:

let val (a,s1) = f(s)
merge[®(T)](f,g)s = val (b, s2) = g(s1)
in (merge[7](a,b), s2) end

Theorem 3 A monoid state transformer is a monoid.

The proof of this theorem is given in the appendix. This theorem is crucial for guaranteeing
the validity of the resulting programs. Note that 7" being a commutative and/or idempotent
monoid does not necessarily imply that ®(7') is too. Note also that while values of type T
are lifted into functions of type ®(T'), functions of type R — T are lifted into R — (7).
These are the only cases needed since we do not support functions of higher order.

23



The rest of this section is concerned with capturing object identity using monoid state
transformers. In the following analysis we mix a pure functional language, namely the monoid
algebra, with object manipulation operations. That way, one may use the pure functional
core of the language for most of the operations, leaving the rest for the object-oriented part
of the language. Our approach is based on Ohori’s work on representing object identity using
monads [14]. In his work he gives operational semantics to the lambda calculus extended
with object identity in terms of the pure lambda calculus. But not any subset of the lambda
calculus, such as a query algebra, extended with object identity can be expressed in terms of
the pure algebra itself. The most notable contribution of our approach is that the resulting
programs (after state transformation) are valid terms in our algebra and, therefore, are
amenable to the same treatment as our basic algebra.

We extend the monoid algebra with the following impure operations:

new : T —obj(T)
! : obj(T)—=T
=1 obj(T) x T—hool

Type obj(T) is a new primitive type that depends on the monoid 7. It represents all
objects with state 7'. new(s) creates a new object with state s, le dereferences the object ¢
(returns the state of €), and e := s changes the state of the object € into s (it returns true).
Expressions of the form e := s should appear only as guards in a comprehension (they do
not filter out any comprehension values, since they are always true, but they side-effect the
object store). For a detailed explanation of these operators, the reader is referred to Ohori’s
paper [14]. The state s of the state transformer is the pair (L, H), called the object heap.
Value L is called the object store. It contains pairs of the form (p,v) that bind an object p
(i.e., the object identity of p) to its state v. Value H is called the Oid pool. It is a set of
integers that correspond to the available object identifiers. Typically, H is the set of natural
numbers. It is highly desirable to have the Oid pool as a set where we can randomly choose
numbers instead of using a counter (an approach adopted in [14]), because, as we will see,
it makes the ®(7') monoid compatible with 7.

The new extended algebra is translated by the rules in Figure 7. [¢] translates a term
t in the extended algebra into a term in the monoid algebra. The first two rules translate
terms that do not contain any new or := subterms. If there is a !z subterm in € or f, it is
translated into lookup(mys, z). Note that € in f(e) in the fourth rule is evaluated before f is
applied (i.e., this is a call-by-value), that is, the state changes in € are performed before the
state changes in f.

The first seven rules in Figure 7 cover most operations in our algebra (records can be
handled like pairs). For example, [merge[T](e1, €2)] = (A(a, s).[merge[T]] as)o [(e1,€2)] =
(AMa, s).(merge[T] a,s)) odistr o (id x [ea]) o [er] = merge[®(T)]([e1], [e2]). Only the last
three rules in Figure 7 manipulate the state. All the other rules simply propagate the state
unchanged. Type T' in the last three rules is inferred from context. The eighth rule that
translates new(s) selects an integer n from the pool H in a non-deterministic way.

We used five constructs to manipulate the object heap: operation reftranslates an integer
into an Oid of type T', emptyStore is the initial store value, OidPool is the initial Oid pool,

24



operation extend updates the store, and operation lookup accesses the store. They have the
following types:

ref! :int—obj(T)

emptyStore : store

OidPool : set(int)

extend” : (store x obj(T') x T') — store
lookup” . (store x obj(T))—T

Operations of this form can be simplified by the following rules:

ref’ (n ) ref” (m) ~ n=m

extend” (extend” (s, z,v),y,u) = extend” (extend” (s,y,u),z.v) ife#y
extend” (extend” (s, z,v),z,u) ~ extend” (s, z,u)

lookup” (extend” (s, z, v), ) ~» if 2 = y then v else lookup” (s, y)

The only rules needed for optimizing object-oriented comprehensions are the above re-
duction rules, the rules of Figure 7, and the normalization algorithm. In fact. most parts
of the resulting programs can be beta-reduced to first-order programs that look very similar
to the programs one might write using the four store manipulation functions directly. The
resulting programs can be implemented very efficiently if the store is a global array. All
the rules except the last one are single-threaded [16]. Roughly speaking, an expression that
involves a state is single-threaded if there is no need of undoing state modifications at any
point, that is, if there is a strict sequencing of state updates. In that case there will always
be only one pointer to the store, and therefore. this store can be implemented as a global
store and all updates as in-place (destructive) updates. Since no object creation is undone
at any point, the object store is single-threaded. The last rule can enforce a single array
pointer by fetching the state first (using lookup) and then by returning the pointer to L.
Any operation on object store can be done destructively. For example, extend” (s, z, v) will
ignore the parameter s, it will modify the global variable that contains the object store (by
inserting the binding from z to v), and it will return a dummy value (e.g. 0). This means
that we can evaluate the resulting programs after state transformation as efficiently as the
real object-oriented programs. Single-threadedness here is enforced by language constraints,
instead of using expensive compile-time analysis to detect it, as is done in some functional
languages.

For example, we will normalize the following object-oriented comprehension:

sum{lz |z < new(l), z :=lx + 1}
= hom[list, sum](Az.if (z :=!z + 1) then !z else 0) [new(1)]

25



We have [z :=!z 4+ 1] = ML, H).(true, (extend™ (L, z,lookup™ (L, z) 4 1), H)). Therefore,

[if (z :=!z + 1) then !z else 0]

= (Ma, (L, H)).if athen (lookup™ (L, z), (L, H))else (0, (L, H)))
o(ML, H).(true, (extend™ (L, z,lookup™ (L, z) 4+ 1), H)))

= ML, H).if truethen (lookupmt(extendmt(L z,Jookup™ (L, z) + 1), z),

(extend™ (L. z, lookupmt(L z)+1),H))else ...
= XL, H).(lookup™ (extend™ (L, w,lookupmt(L, z)+1),z),
(extend™ (L, z,lookup™ (L, z) + 1), H))
= ML, H).(lookup™ (L, z) + 1, (extend™ (L, z, lookup™ (L, z) + 1), H))

In addition, [[new(1)]] = ML, H).([ref™(n)], (extend™ (L, ref™(n), 1), H—{n})). Therefore,

[sum{!z |z < new(l), z :=lz+1}] ' ' '
= hom|[list, ®(sum)|(Az.A(L, H).(lookup™ (L, z) + 1, (extend™ (L, 2, lookup™ (L, z) + 1), H)))
[ref™ (n)] (extendlm(L,reflét(n), 1), H—{n})
= ML, H).(R+1, (extend™ (extend™ (L, ref"™(n), 1), ref™(n), R+ 1), H — {n}))
where R = lookuplét(extendmt(L,refmt(n), 1), ref™(n)) = 1
= ML, H).(2, (extend™ (L,ref"™(n),2), H — {n}))

That is, the resulting value is 2 and the state is augmented by the binding from a new OID
to 2.

Similarly, the following comprehensions are normalized into values when they applied to
some state:

some{x =y|z < new(l), y < new(l) } ~» false
some{lz =ly |z < new(l), y < new(1) } ~ true
some{r =y|z <new(l),y <z, y:=2} ~ true
sum{lz |z <new(l), y <z, y:=2} ~ 2
set{e|x < new([]), z:=[1.2], e<la } ~ {1.2}
list{!z |z [new(1),new(2)], z :=lz+ 1} ~ [2,3]
list{!z |z < new(0), e« [1.2,3.4], z:=lz+e} ~ [1,3,6,10]

Because of the non-determinism introduced when we choose an arbitrary number n € H
for the OID of a new object, we can support sets of objects without any inconsistency. For
example, {new(1), new(2)} is a valid expression and it is equal to {new(2), new(1)}:

[new(1) new(2)}] |
= L H)((ref (), vl ()}, |
(ext}endmt(ext'endmt(L,refmt(n), 1), ref™(m),2), H — {n,m}))
= ML, H).({ref™(m), ref™(n)}, ' '
(extend™ (extend”™ (L, ref™"(m), 2), ref™(n), 1), H — {m,n}))
— [new(2). new(1)}]

However, there are still problems with assignments. For example, {sum{ 1|z :=1}, sum{2|z :=
2 }} will bind = to 2 while {sum{ 2|z := 2}, sum{1|z :=1}} will bind = to 1. Similarly,

26



set{a|a+ A, x :=lz + a } is not valid since + in !z + a is not idempotent. Here we present
a syntactic restriction to programs (reminiscent to 7' < S for hom[T', S]) that always rejects
inconsistent programs. We believe that this is a sufficient (even though not a necessary)
condition for a program to be valid. The proof of this conjecture is a topic for future work.

Conjecture 1 An object-oriented algebraic form is valid if it does not contain sublerms of
the following forms (for a commutative or idempotent monoid T ):

1. merge[T](...x :=€1 ..., ... 2 := €y ...), where x was bound outside this merge and
terms €1 and ey are not of the form merge[S](lx, €), where T' < S and the term e does
not contain a term 'y where y was bound oulside this merge;

2. hom[R, T|(Av.... x := €1 ...) €z, where x was bound outside this hom and the lerm e,
is not of the form merge[S|(!z,€), where T' < S and the term e does not contain a term
ly where y was bound outside this hom.

For example, {sum{ 1|z := 1}, sum{2|x :=2}} is not valid because it is of the first form,
and set{a|a+ A, x :=lz + a } is not valid because !z + a is constructed as a sum monoid,
which is not idempotent (i.e., set A sum). However, set{a|a+ A, a :==la+ 1} is a valid
expression since «a is defined locally in the comprehension, and set{a|a+ A, x :=lx Ua} is
valid since U is idempotent.

7 Destructive Updates

The state transformer introduced in the previous section can also be used for expressing
destructive updates in terms of the basic algebra. That way database transactions and
queries can be optimized in a single framework. Let db be the current database state with
type DB (a monoid type). Typically, db is the aggregation of all persistent objects in a
program. A database update in an applicative language can be expressed as a function of
type DB — DB that consumes the current database and constructs a new database. If this
function was evaluated naively, it would result into a lot of unnecessary copying, which could
be avoided if this update was evaluated directly in an imperative language. That is. we have
a tension here: on one hand we want an equational theory for updates that would allow us
to do algebraic optimization and reasoning, and on the other hand we want the resulting
programs to be evaluated doing destructive updates to the database. That is, following the
analysis of the previous section, we want to translate updates into the monoid algebra in
such a way that the propagated state (i.e., the database) is single-threaded.
The state transformer used here is

O(T) = DB—(T x DB)

that is, the state propagated through all expressions is db, the actual database. Object
identity can be handled by the above state transformer by incorporating the object heap
into db.

27



Tle]le = As.(e[db/s], s) (if € is first-order with no updates)
Tlfle = Xa.Xs.(f(a),s) (if [ is second-order with no updates)
Tl(er,e2)]o = distro (id x (T[ea]o)) o (T[er]o)
TU@lo = (Ma.s)(TLflo)as)o (TTelo)
T v.e]Jo = Av.(T[e]o)
T[if €1 then e; else es]lo = (A(a, s).if a then T[es]o s else Tes]os) o (T[er]o)

, B As.hom[R, ®(T)](Avy. T [e]o’) (pv2) s
Tlhoml k. Ti(Avi.€) (pra)]or = { where ¢’ = [()\(a,s).(avg)(P[[pp]](a,vg),5))/v1]

Tlupdate(po.w.)lo = (Ma, s).((Av.a) (Plp)(u,v). (00)(Plp](w.v). s)) o (T[e]o)

Figure 8: Translation of the Monoid Algebra Extended with Updates

We extend Definition 6 with the following destructive operation:
T{e|pveu, 7} = update(pv,u,T{e|T})

Expression pv denotes a path (i.e.. p is a sequence of projections a;, 0 a;, o --- 0 a;,. where
each a;, is a record attribute). Expression pv&u destructively replaces pv with u. Operation
update is an impure operation that modifies the database. We will also use the following
shorthands:

pvetu = pvemergelS](unit[S](u), pv)

pve—u = pveS{ala+pv,a#u}

That is, pv&t u inserts u into pv (pv is a monoid of type S) and pv&— u deletes all elements
of pv equal to u.
For example, if DB = set(int), then

sum{l]a+db,a> 10, act 1}

increments every database element greater than 10 by one. It returns the number of elements
updated.

Figure 8 gives the translation T [e]o of the algebraic expression e extended with updates.
Operation P[p] is defined as follows:

Plid] = A€, 8).€
Plpoa] = Me.s).(ar = s.ar,....a; = Plp](e,s.a;),...,a, = s.a)
where s is of type (a1 : t1,....a, : t,)

For example, P[my 0 m] = A€, s).((mims, €), mes). That is, P[p](e. s) is equal to a copy of
s but with the ps part of s replaced by e.
A generalized path of a variable v in a database update € is a sequence of paths [p1,.. .., p,]

such that there exist a sequence of variables [ao, . .., a,] with ag = db and a,, = v such that

28



hom|[T', S](Aa;.€;) (pia;—1) is a term in e. This definition basically says that v is generated by
a comprehension that looks like this:

T{u|a;+ p1db, ag+paay,.... v ppa,_1}

The function GP[v] is defined inductively for any such generator a; ¢ p;a;_1:
GPla] = An.s).(GPlai-1]) (Plpd(n. ai-1). s)

with GP[[db] = A(n, s).n. The idea behind GP[v] is that the expression unit”?(GP[v](n, db))
(at the point v is defined) will return a slice of the database db but with v replaced by
n. The binding list o in the algorithm of Figure 8 binds a variable v to GP[v]. That is,
ov = GP[v]. For example, if a comprehension includes the generators a + m1db and b+ ma,
then o = [(A(e, s).(e,ms))/a, (A(e, s).((ma, €),m2s))/b]. Initially o = [(A(e, s).€)/db].

We assume that the algebraic operation € has been normalized to canonical form before
the evaluation of T[e]lo. That is, all monoid homomorphisms are over paths of the form
pv. Variables vy and v in the last two rules are assumed different than db. Otherwise,
s is substituted for db. The rule before the last, which translates a normalized monoid
homomorphism, is very similar to the one in Figure 7. Here though o is extended to include
the binding from vy to GP[Jv1]. The last rule translates a destructive update. It returns
the pair of a value and a new state. The value is ¢ but with any occurrence of variable v
replaced by P[p](u,v) (i.e., this a copy of v in which pv is replaced by u). The new state is
the current state but with pv replaced by w.

For example, set{a|a<+db, a=t 1} is translated into

hom[set, ®(set)](Aa.As.(a+ 1,5+ 1)) dbdb
As another example, consider DB = set(int x list(int x int)) x int. Then
set{mb|a+mdb, b+ ma, mbst madb}

is translated into

hom([set, ®(set)](Aa.hom[list, ®(list)][(Ab.As.(mb + mas, ((m1a, (m1b + w8, b)), m2s))) (mea))
(m1db) db

Notice that unit[DB]((a, (b,¢)),d) = ({(a,[(b, ¢)])}. d). Therefore, the value(m1b+ mas, ((ma,
(m1b + mas, b)), mas)) will be lifted into an int x DB value in which the integer will hold
the resulting value while the DB will be the new database state.

We believe that the state transformer for destructive updates is single-threaded. That is,
no database update is undone at any point. Of course, in real database systems. transactions
are not single-threaded because of the transaction atomicity: some database updates need
to be undone in case of failure. There are many ways to overcome this problem and all these
ways constitute the database recovery mechanism (e.g. by copying the database state before
a transaction or by using shadowing). The resulting programs after state transformation can
be evaluated using destructive updates if we make the operation P[p](e, s) destructive. That

29



is, instead of returning a copy of s with ps replaced by e, we destructively update ps into
e. Operations P[p] though are unfolded during program optimization. Since recognition of
destructive updates should come after optimization, we would need the inverse of P[p] to
generate calls of the form P[p](e, s) by pattern-matching path expressions.

The above analysis can be extended to include destructive updates on vectors. The vector
updates supported are either vector- or element-based. For example, v[i]&+ 1 increments
the 7th element of v by one. A path pv can now include vector accesses. For example, if the

path is v.A[7].C, then p = C o (Az.x[i]) o A. We extend the P[p] function as follows:
Plpo (Av.w[k])] = Me, s).(vec[n](T)){ (if 1 = kthenP[p](e, a) elsea)[i] | ali] s }

where the type of s is vec[n](T'). That is, we reconstruct the vector s by copying all its
elements except the kth element s[k] whose p(s[k]) part is set to e.

Furthermore, it is easy to see what constitute a valid updatable view in our framework.
For a set of variables V' we define the following term form:

EIV] == pv|{a1: E[V].....a, : E[V])
where v € V. An updatable view is either E[{db}] or T{E[{x1,...,x,}| |7}, where each z;

is a generalized path defined in 7. It is easy to prove that if a view v is defined as a term
of this form, then v can be used in place of db and any view update can be compiled into a
database update by simply unfolding the view definition.

8 Related Work

Monoid homomorphisms as a database query language were first introduced by V. Tannen
and P. Buneman [3, 5, 4]. Their forms of monoid homomorphisms (also called structural
recursion over the union presentation — SRU) are more expressive than ours. In particular,
the Hom operator presented on Page 3 is similar to the SRU operation for lists. Operations
of the form Hom**(e, f,acc), though, require that acc be associative, commutative, and
idempotent with a zero element e. These properties are very hard to check by a compiler [5],
which makes the SRU operation impractical. They first recognized that there are some spe-
cial cases where these conditions are automatically satisfied, such as for the ext(f) operator
(which is equivalent to flattenmap). In our view, SRU is too expressive, since inconsistent
programs cannot always be detected in that form. Moreover, the SRU operator can capture
non-polynomial operations, such as the powerset, which complicate query optimization. In
fact, to our knowledge, there is no normalization algorithm for SRU forms in general. That
is, SRU forms cannot be put in canonical form. On the other hand, ext(f) is not expressive
enough, since it cannot capture operations that involve different collections and it cannot
express predicates and aggregates. We believe that our monoid homomorphism algebra is
the most expressive subset of SRU where inconsistencies can always be detected at compile
time, and. more importantly, where all programs can be put in canonical form.

Monad comprehensions were first introduced by P. Wadler [23] as a generalization of list
comprehensions (which have already been used in some functional languages). Monoid com-
prehensions are related to monad comprehensions but they are considerably more expressive.

30



In particular, monoid comprehensions can mix inputs from different collection types and may
return output of a different type. This is not possible for monad comprehensions, since they
restrict the inputs and the output of a comprehension to be of the same type. Monad com-
prehensions were first proposed as a convenient database language by P. Trinder [20, 19]
who also presented many algebraic transformations over these forms as well as methods for
converting comprehensions into joins. The monad comprehension syntax was also adopted
by P. Buneman and V. Tannen [7] as an alternative syntax to monoid homomorphisms. The
comprehension syntax was used for capturing operations that involve collections of the same
type while structural recursion was used for expressing the rest of the operations (such as
converting one collection type to another, predicates, and aggregates).

Our normalization algorithm is highly influenced by I.. Wong’s work on normalization of
monad comprehensions [24, 25]. He presented some very powerful rules for flattening nested
comprehensions into canonical comprehension forms whose generators are over simple paths.
These canonical forms are equivalent to our canonical forms for monoid homomorphisms.
He used these canonical forms to prove a very important theorem about the expressiveness
of query languages that possess the conservative extension property (i.e., languages in which
the nesting of the input and output collections in a function cannot exceed a certain level).
The theorem indicates that this maximum level of nesting is independent of the nesting level
of intermediate data structures used by a function. That is, adding more nesting level to
the intermediate data structures does not increase the expressiveness of the language. This
theorem is a consequence of the fact that nested intermediate structures can be flattened
out from monad comprehensions by the normalization algorithm.

Our object-oriented comprehensions are based on Ohori’s work on capturing object iden-
tity in a functional language [14]. However, our work is the first one that incorporates this
theory into a database calculus. (Ohori applied this theory in the general framework of
lambda calculus.) Consequently, we can optimize the resulting second-order programs by
using the same optimization techniques used for regular programs without object identity.

9 Conclusion

We have introduced a new calculus for capturing operations over collection types. This
calculus is based upon the theory of monoid homomorphisms. It can be used as a database
query language as well as a language for expressing data and nested parallelism. It supports
an efficient normalization algorithm that improves program performance, eliminates garbage
structures, and increases the degree of parallelism. This uniform treatment of collection
types and their operations may lead into a new unified theory that generalizes the nested
relational algebra.

We have experimented with a prototype query optimizer for the OQL language of the
ODMG-93 standard. Our optimizer translates OQL syntax into the monoid calculus syntax,
which in turn is translated into an algebraic form. The resulting algebraic expressions are
normalized by the optimizer to a canonical form, which is passed to a plan generator that
searches the space of alternative access paths and algorithms to retrieve an efficient plan.
In addition, the normalizer was extended to support object identity, as it is described in

31



Section 6.

Acknowledgements: The author is grateful to Dave Maier, Tim Sheard, Val Tannen, Bennet

Vance, and Limsoon Wong for helpful comments on the paper. This work is supported by the
Advanced Research Projects Agency, ARPA order number 18, monitored by the US Army Research
Laboratory under contract DAAB-07-91-C-Q518.

References

[1]

[2]

[10]

[11]

G. Blelloch. NESL: A Nested Data-Parallel Language. Technical report, Carnegie Mellon
University, April 1993. CMU-CS-93-129.

G. Blelloch and G. Sabot. Compiling Collection-Oriented Languages onto Massively Parallel
Computers. Journal of Parallel and Distributed Computing, 8(2):119-134, February 1990.

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query Language. In
Proceedings of the Third International Workshop on Database Programming Languages: Bulk
Types and Persistent Data, Nafplion, Greece, pp 9-19. Morgan Kaufmann Publishers, Inc.,
August 1991.

V. Breazu-Tannen, P. Buneman, and L.. Wong. Naturally Embedded Query Languages. In j4th
International Conference on Database Theory, Berlin, Germany, pp 140-154. Springer-Verlag,
October 1992. LNCS 646.

V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Program-
ming with Sets/Bags/Lists. In 18th International Colloquium on Automata, Languages and
Programming, Madrid, Spain, pp 60-75. Springer-Verlag, July 1991. LNCS 510.

P. Buneman. The Fast Fourier Transform as a Database Query. Technical report, University
of Pennsylvania, March 1993. MS-CIS-93-37/L&C 60.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension Syntax. SIGMOD
Record, 23(1):87-96, March 1994.

R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann, 1994.

L. Fegaras. Efficient Optimization of Iterative Queries. In Fourth International Workshop on
Database Programming Languages, Manhattan, New York City, pp 200-225. Springer-Verlag,
Workshops on Computing, August 1993.

L. Fegaras, T. Sheard, and T. Zhou. Improving Programs which Recurse over Multiple In-
ductive Structures. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, Orlando, Florida, pp 21-32, June 1994.

L. Fegaras and D. Stemple. Using Type Transformation in Database System Implementation.
In Proceedings of the Third International Workshop on Database Programming Languages:
Bulk Types and Persistent Data, Nafplion, Greece, pp 337-353. Morgan Kaufmann Publishers,
Inc., August 1991.

32



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

W. Hillis and G. Steele. Data Parallel Algorithms. Communications of ACM, 29(12), pp
1170-1183, December 1986.

D. Maier and B. Vance. A Call to Order. Proceedings of the 12th ACM Symposium on
Principles of Database Systems, Washington, DC, pp 1-16, May 1993.

A. Ohori. Representing Object Identity in a Pure Functional Language. In International
Conference on Database Theory, Paris, France, pp 41-55. Springer-Verlag, December 1990.
LNCS 470.

D. Parker, E. Simon, and P. Valduriez. SVP — a Model Capturing Sets, Streams, and Paral-
lelism. In Proceedings of the 18th VLDB Conference, Vancouver, Canada, pp 115-126, August
1992.

D. Schmidt. Detecting Global Variables in Denotational Specifications. ACM Transactions on
Programming Languages and Systems, 7(2):299-310, April 1985.

T. Sheard and L. Fegaras. A Fold for All Seasons. Sizth Conference on Functional Programming
Languages and Computer Architecture, Copenhagen, Denmark, pp 233-242, June 1993.

J. Sipelstein and G. Blelloch. Collection-Oriented Languages. Technical report, Carnegie
Mellon University, March 1991. CMU-CS-90-127.

P. Trinder. Comprehensions: A Query Notation for DBPLs. In Proceedings of the Third
International Workshop on Database Programming Languages: Bulk Types and Persistent
Data, Nafplion, Greece, pp 55—68. Morgan Kaufmann Publishers, Inc., August 1991.

P. Trinder and P. Wadler. Improving List Comprehension Database Queries. In in Proceedings
of TENCON’89, Bombay, India, pp 186-192, November 1989.

S. Vandenberg and D. DeWitt. Algebraic Support for Complex Objects with Arrays, Identity,
and Inheritance. Proceedings of the ACM-SIGMOD International Conference on Management
of Data, Denver, Colorado, 20(2), May 1991.

P. Wadler. The Essence of Functional Programming. In Proceedings of the Nineteenth ACM
Symposium on Principles of Programming Languages, Albuquerque, NM, pp 1-14, January
1992.

P. Wadler. Comprehending Monads. Proceedings of the ACM Symposium on Lisp and Func-
tional Programming, Nice, France, pp 61-78, June 1990.

L. Wong. Normal Forms and Conservative Properties for Query Languages over Collection
Types. Proceedings of the 12th ACM Symposium on Principles of Database Systems, Wash-
ington, DC, pp 26-36, May 1993.

L. Wong. Querying Nested Collections. PhD thesis, Univerity of Pennsylvania, March 1994.
Also appeared as a Univerity of Pennsylvania technical report IRCS Report 94-09.

B. Yang, J. Webb, J. Stichnoth, D. O’Hallaron, and T. Gross. Do&Merge: Integrating Parallel
Loops and Reductions. In Sizth International Workshop on Languages and Compilers for
Parallel Computing, Portland, Oregon, pp 169-183. Springer-Verlag, August 1993. LNCS 768.

33



A The Proof of Theorem 3

Theorem 2 [f (T,zero[T], merge[T]) is a monoid, then (®(T), zero[®(T')], merge[®(T")]) is

also a monoid, where
o(T)
zero[®(T")]
merge[®(T)](/. 9)

Proof: First we need to prove that zero[®(7")] is the left and right identity of merge[®(T')]
and that merge[®(7T')] is associative:

S—(T x S)
As.(zero[T], s)
(merge[T] x id) o distr o (id x g) o f

1) merge[d(T))(rero[®(T)], )

(merge[T] x id) o distr o (id x g) o zero[®(T")]
As.(merge[T] x id)(distr((id x g)(zero[T], s)))
As.(merge[T] x id)(distr(zero[T], g s))
As.(merge[T] x id)((zero[T], m1(g s)), m2(g s))
As.(merge[T](zero[T]. m1(g s)), m2(g s))
As(mi(gs). ma(gs)) = As.(gs) =g

) merge[®(T)]( /. rerold(T)])

(merge[T'] x id) o distr o (id x zero[®(T")]) o f
(merge[T'] x id) o distr o (id x (As.(zero[T], 5)))
(meraelT]  id) o (M. ). ((a, ero{T]) ))& f
(Ma. s).(mergelT(a, zero[TT). 5)) o f
(Mazs)-(a,5)) o f = f

3) We need to prove that merge[®(T")](merge[®(T)](f. g), h) = merge[®(T)](f. merge[®(T")](g. h)).
The product of functions (f,g) is defined as (f,g)(a) = (fa,ga). It is easy to prove the
following properties:

x>y
(id x my, T3 0 o)
merge[T] o (id x (my0g))o f

mogomyo f

(fom,gom)

distr
w1 o merge[®(T)](f. 9)
7o 0 merge[®(T)](f. g)

In addition, we know that merge[T] is associative, that is, merge[T] o (merge[T] x f) =
merge[T'] o (w1 o m, merge[T] o (g x f)).

34



We have two cases:

3.a) myomerge[®(T)](merge[®(T)](f.g),h)
Ty 0 h o my 0 merge[®(T)](f. g)
mpohomogomo f
7y 0 merge[®(T)](g,h)omao f
72 0 merge[®(T)]( /. merge(®(T)] g, )
o mergeld(T)](merge{®(T)]( /. 4). )
merge[T'] o (id x (w1 o h)) o merge[®(T)](f, g)

2

3.b)

= merge[T'] o (id x (m o h)) o (merge[T] x id) o (id x my,ma 0 M) 0 (id x g) o f

= merge[T'] o (merge[T'] x (m10h)) o (id x m, T3 0m) 0 (id x g) o f

= merge[T'] o (my o my, merge[T'] o (mg x (my 0 h))) o (id x my,m 0me) 0 (id x g)o f
= merge[T'] o (my, merge[T] o (mg X (m 0 h))o (id x m, T3 0m3)) 0 (id x g) o f

= merge[T] o (my, merge[T] o (my omy, mpohomoms))o(id x g)o f

= merge[T] o (w1, merge[T]| o (my,m 0 homg)omy)o(id x g) o f

= merge[T] o (my, merge[T] o (id x (m; 0 h)) omy) o (id x g)o f

= merge[T] o (my, merge[T] o (id x (myoh))ogom)o f

= merge[T] o (id x (merge[T]o (id x (w10 h))og))o f

= merge[T] o (id x (71 o merge[®(T)](g,h))) o f

m o mergel(T)](f. merge[®(T)](g. b))

Therefore, merge[®(T)](merge[®(T)](f, g). h) = merge[®(T)](f, merge[®(T)](g.h)). O

35



