Algebraic Languages and Optimization Methods
for Functional Programs and Database Languages

Leonidas Fegaras
Assistant Professor, UTA

A New Formal Model is Needed

A formal algebra:
« facilitates equational reasoning,
« provides a theory for proving query transformations correct,
« imposes language uniformity,
« avoids language inconsistencies.

What is an effective algebra?
Several aspects:
 coverage,
« ease of manipulation,
« ease of evaluation,
« uniformity.

Modern Functional Languages

Most popular: SML and Haskell.
They are based on the lambda calculus.

They support:

strong static typing with type inference,
automatic garbage collection,

resilience to store corruption (no core dumps!),
parametric polymorphism,

higher-order functions,

algebraic data types (no pointerst),

pattern matching.

Some features are showing up in new imperative languages
(e.g., Java).

The Gap Between Theory & Practice

Most commercial relational query languages are based on the
relational calculus. However in some respects they go beyond
the formal model. They support:

aggregate operators,

sort orders,

grouping,

update capabilities.

New database languages must be able to handle:
« type extensibility,
multiple collection types (e.g., sets, lists, trees, arrays),
arbitrary nesting of type constructors,
large objects (e.g., text, sound, image),
methods.

Functional Languages to the Rescue

Functional languages are value-based (no side-effects!).

Values are immutable; new values are constructed from old values.
Programs are organized into functions.

Easier to write, understand, and reason about programs.

Functional vs. imperative programs:
side effects

input output
f input output

Pure functions can always be tested separately.

Many optimizations are not always valid in imperative languages:
Xy > ¥
X0 => 0

eg.,iffQ={a=1;5%}, then fQP0 is not equivalent to Q

Example from Haskell

chta list a = Nil | Qs a (list &)

Qrs 1 (@rs 2 Qs 3 Nil))

Mapping a function f over the elements of a list:

mep :: (@>h) = lista = listb
mep T Nil =Nil
mp f@sar)=0s (fa) (g fr)

mepQa > a+l) (s 1 @rs 2 Qs 3 Nib))
= (s 2 Qs 3 Qs 4 Nil)

(where \a=atl s the function f such that f@=atl)

Loop Fusion and Deforestation

mep T Nil =Nil
mp f@sar)=0s (fa) (g fr)

amNil =0
am @sar) =aamr)

Suppose that we compose these operations:

fx = am@ep(a = atl) X)

A better definition of £

il =0
f@sar) = @IHFEr

The Fold Operator

A fold is the natural control structure for an algebraic data type.
It uses functional parameters to abstract over common inductive patterns.
It replaces data constructors with functions.

chta list a = Nil | Qs a (list &)

fold c n Nil =n
foldcn(@sar)=ca(oldcnr)

For example, if x=Cas 1 (Cas 2 (Cas 3 Nil))
then:
foldcnx = c1(2c3n)

Other Fold Operators
dita treea = leaf a | Noce (ree @) a (bree @)

foldmnQeaf @ =m
foldmn (ke xay) =n (foldmnx) a (fold mny)

flatten x =fold (\l ar = gped | Qs a) Nil

How Can we Fuse Programs?

nepQaarl) I an I £ I
| | |

We can use standard program transformation techniques
... or we can use folds.

Folds

can be defined for a large number of algebraic data types;
support calculation-based program optimizations;
support loop fusion and deforestation;

facilitate equational reasoning and theorem proving.

So What is a fold?

Examples

fold c n Nil =n
foldcn(@sar)=ca(ldcnr)

amNil =0
am @sar) =aamr)

amx = fold \ar - at) 0x
am s 1 (s 2 @s 3Nil)) = H2A3H0=6

mep T Nil =Nil
mp f@sar)=0s (fa) (g fr)

mp Fx = fold (\as = Qs (Fa)) Nil x

Fusion Laws

For lists:

n” = g
c’a(@nr) = ocar)

g(foldcnx) = foldc” n” x

For trees:

m”a = gma)
n” @bha@n =ghlan

a(foldmnx) = foldm” n” x

Fusion Example

mp Fx = fold (\as = Qs (Fa)) Nil x
= foldcnx
amx = fold (\as - ats) 0x

n> = amn

c’a(@mr) = amcar)
am(foldcnx) =foldc” n” x

n”> =amn=amNil =0
c’a@mr)=amcar)
=am@rs (Fa) N
=Fat@mn
=c”as=(fays
:>1m(rra)fx)=ﬁ')|d Qas—=> (Fays) 0x

Conclusion

Value-based, higher-order, operations:
provide a uniform way of expressing database queries;

have sufficient expressive power to capture modern
database languages;

satisfy simple laws that facilitate the proof of program
correctness;

support algebraic optimization methods.

Folds as a Basis for a Query Algebra

Folds have been used as a query algebra for an object-oriented
database:
« relational database operations can be expressed as folds:
Joinfpxy =
fold (a r - fold\b s > if (pab) then
Gs (Fab) rels=r) yr) xNil
« query plans can be expressed as folds;
« the fusion algorithm generalizes many algebraic query
optimization techniques (such as unnesting queries);
« fusion can be used for eliminating the object translation
overhead when translating queries into plans.

Problems: set commutativity and idempotence:
xUy = yUx
xUx = x

Current Work

My current research work includes:

« building a query optimizer for ODMG'93 OQL using the
monoid comprehension calculus. Using a physical design
language to map conceptual queries into physical plans.
(Work with Dave Maier at OGlI; currently supported by NSF).
extending OODB languages with temporal features (work
with Ramez Elmastri at UTA).
making functional languages more efficient by using program
transformation techniques (work with Tim Sheard at OGl).

