
- 1 -

Algebraic Languages and Optimization Methods

for Functional Programs and Database Languages

Leonidas Fegaras

Assistant Professor, UTA

- 2 -

The Gap Between Theory & Practice

Most commercial relational query languages are based on the

relational calculus. However in some respects they go beyond

the formal model. They support:

• aggregate operators,

• sort orders,

• grouping,

• update capabilities.

New database languages must be able to handle:

• type extensibility,

• multiple collection types (e.g., sets, lists, trees, arrays),

• arbitrary nesting of type constructors,

• large objects (e.g., text, sound, image),

• methods.

- 3 -

A New Formal Model is Needed

A formal algebra:

• facilitates equational reasoning,

• provides a theory for proving query transformations correct,

• imposes language uniformity,

• avoids language inconsistencies.

What is an effective algebra?

Several aspects:

• coverage,

• ease of manipulation,

• ease of evaluation,

• uniformity.

- 4 -

Functional Languages to the Rescue

Functional languages are value-based (no side-effects!).

Values are immutable; new values are constructed from old values.

Programs are organized into functions.

Easier to write, understand, and reason about programs.

Functional vs. imperative programs:

Pure functions can always be tested separately.

Many optimizations are not always valid in imperative languages:

x+y -> y+x

x*0 -> 0

e.g., if f() = { a:=a+1; 5 }, then f()*0 is not equivalent to 0.

f
input output

f
input output

side effects

- 5 -

Modern Functional Languages

Most popular: SML and Haskell.

They are based on the lambda calculus.

They support:

• strong static typing with type inference,

• automatic garbage collection,

• resilience to store corruption (no core dumps!),

• parametric polymorphism,

• higher-order functions,

• algebraic data types (no pointers!),

• pattern matching.

Some features are showing up in new imperative languages

(e.g., Java).

- 6 -

Example from Haskell

data list a = Nil | Cons a (list a)

Cons 1 (Cons 2 (Cons 3 Nil))

Mapping a function f over the elements of a list:

map :: (a->b) -> list a -> list b

map f Nil = Nil

map f (Cons a r) = Cons (f a) (map f r)

map(\a -> a+1) (Cons 1 (Cons 2 (Cons 3 Nil)))

 = Cons 2 (Cons 3 (Cons 4 Nil))

(where \a->a+1 is the function f such that f(a)=a+1)

21 3

- 7 -

Loop Fusion and Deforestation

map f Nil = Nil

map f (Cons a r) = Cons (f a) (map f r)

sum Nil = 0

sum (Cons a r) = a+(sum r)

Suppose that we compose these operations:

f x = sum(map(\a -> a+1) x)

A better definition of f:

f Nil = 0

f (Cons a r) = (a+1)+(f r)

- 8 -

How Can we Fuse Programs?

We can use standard program transformation techniques

... or we can use folds.

Folds

• can be defined for a large number of algebraic data types;

• support calculation-based program optimizations;

• support loop fusion and deforestation;

• facilitate equational reasoning and theorem proving.

So What is a fold?

map(\a->a+1) sum f

- 9 -

The Fold Operator

A fold is the natural control structure for an algebraic data type.

It uses functional parameters to abstract over common inductive patterns.

It replaces data constructors with functions.

data list a = Nil | Cons a (list a)

fold c n Nil = n

fold c n (Cons a r) = c a (fold c n r)

For example, if x = Cons 1 (Cons 2 (Cons 3 Nil))

then:

fold c n x = c 1 (c 2 (c 3 n))

- 10 -

Examples

fold c n Nil = n

fold c n (Cons a r) = c a (fold c n r)

sum Nil = 0

sum (Cons a r) = a+(sum r)

sum x = fold (\a r -> a+r) 0 x

sum (Cons 1 (Cons 2 (Cons 3 Nil))) = 1+2+3+0 = 6

map f Nil = Nil

map f (Cons a r) = Cons (f a) (map f r)

map f x = fold (\a s -> Cons (f a) s) Nil x

- 11 -

Other Fold Operators

data tree a = Leaf a | Node (tree a) a (tree a)

fold m n (Leaf a) = m

fold m n (Node x a y) = n (fold m n x) a (fold m n y)

flatten x = fold (\l a r -> append l (Cons a r)) Nil

- 12 -

Fusion Laws

For lists:

 n’ = g(n)

c’ a (g r) = g(c a r)

g(fold c n x) = fold c’ n’ x

For trees:

 m’ a = g(m a)

n’ (g l) a (g r) = g(n l a r)

 g(fold m n x) = fold m’ n’ x

- 13 -

Fusion Example

map f x = fold (\a s -> Cons (f a) s) Nil x

 = fold c n x

sum x = fold (\a s -> a+s) 0 x

 n’ = sum n

c’ a (sum r) = sum(c a r)

sum(fold c n x) = fold c’ n’ x

n’ = sum n = sum Nil = 0

c’ a (sum r) = sum(c a r)

 = sum(Cons (f a) r)

 = (f a)+(sum r)

=> c’ a s = (f a)+s

=> sum(map f x) = fold (\a s -> (f a)+s) 0 x

- 14 -

Folds as a Basis for a Query Algebra

Folds have been used as a query algebra for an object-oriented

database:

• relational database operations can be expressed as folds:

join f p x y =

 fold (\a r -> fold(\b s -> if (p a b) then
Cons (f a b) r else r) y r) x Nil

• query plans can be expressed as folds;

• the fusion algorithm generalizes many algebraic query
optimization techniques (such as unnesting queries);

• fusion can be used for eliminating the object translation
overhead when translating queries into plans.

Problems: set commutativity and idempotence:

x U y = y U x

x U x = x

- 15 -

Conclusion

Value-based, higher-order, operations:

• provide a uniform way of expressing database queries;

• have sufficient expressive power to capture modern
database languages;

• satisfy simple laws that facilitate the proof of program
correctness;

• support algebraic optimization methods.

- 16 -

Current Work

My current research work includes:

• building a query optimizer for ODMG’93 OQL using the
monoid comprehension calculus. Using a physical design
language to map conceptual queries into physical plans.
(Work with Dave Maier at OGI; currently supported by NSF).

• extending OODB languages with temporal features (work
with Ramez Elmasri at UTA).

• making functional languages more efficient by using program
transformation techniques (work with Tim Sheard at OGI).

