Query Engines for Web-Accessible XML Data

Leonidas Fegaras

Ramez Elmasri

Department of Computer Science and Engineering
The University of Texas at Arlington
416 Yates Street, P.O. Box 19015
Arlington, TX 76019-19015

email: {fegaras,elmasri} @cse.uta.edu

Abstract

Even though XML was first introduced as a
schema-less, self-describing data representa-
tion language, there are now proposals for
XML schema descriptions. The addition
of schema information opens new opportuni-
ties in using the already established database
management technology for storing and han-
dling XML data, since databases are tradi-
tionally focused on data that conform to a
fixed, predefined schema. Schema informa-
tion allows better data integrity, more effec-
tive data storage, and more efficient query
evaluation. This paper describes an effective
framework for storing XML data in an object-
oriented database and an optimization frame-
work for translating XML queries into efficient
algorithms. We first present a new type sys-
tem for describing XML data, well integrated
with the ODL type system of the ODMG stan-
dard, that captures both schema-less (semi-
structured) and schema-based XML data. We
then introduce a small set of syntactic ex-
tensions to ODMG OQL, powerful enough
to make OQL a full-fledged XML query lan-
guage. Next, we present a framework for
translating XML queries into OQL queries
based on XML schema information. Instead
of inventing yet another semi-structured alge-
bra for expressing our translations, the tar-
get of our transformation rules is OQL code,
which not only has precise semantics, but has
also been the focus of various optimization

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

techniques. Schema information is an indis-
pensable component of our transformations.
It is used in disambiguating terms with mul-
tiple interpretations such as wildcard tag pro-
jections, in choosing the storage format for
the XML data, and in generating OQL code
guided by the choice of storage.

1 Introduction

XML [16] has emerged as the leading textual lan-
guage for representing and exchanging data on the
web. Even though XML has been developed without
any active involvement by the mainstream database
community, some database researchers have actively
participated in the development of other standards
centered around XML, such as query languages for
XML, and have addressed storage and performance
issues for XML data repositories. There is a wide
range of opinions about the relationship between XML
and databases. Some researchers believe that XML
will dominate the database area and will eventually
replace relational databases, while others dismiss it
as nothing but a tree-structured representation, not
much different from Lisp’s S-expressions or hierarchi-
cal data models. Regardless of which side one takes,
there is good news in the XML standardization arena,
which may open new opportunities for database re-
search in this area [15]. Even though XML was in-
troduced as a schema-less, self-describing language,
there are proposals now for XML schema languages,
such as DTD (Document Type Declaration) and XML
Schema [16]. The development of such schema de-
scriptions was not driven by efficiency concerns per
se, but rather by the need for enforcing data integrity.
On the other hand, databases have been traditionally
focused on data that conform to a fixed, predefined
schema. This also remained the focus of the emerging
database languages, such as the object-relational and
object-oriented database (OODB) languages. There is
a good reason for the tendency of databases towards
static typing: In addition to safety and data integrity,



schema, information allows more effective data storage
and access paths, and more efficient query evaluation.

There have been many commercial products re-
cently that take advantage of the already established
database management technology for storing and han-
dling XML data. In fact, nearly all relational database
vendors provide now some functionality for storing
and handling XML data in their systems, such as
the Oracle XML Developer’s Kit (XDK). We now
see similar products showing up from OODB vendors,
such as POET’s Content Management Suite and Ob-
ject Design’s eXcelon system. Most of these systems
support automatic insertion of canonically-structured
XML data into tables, rather than utilizing the XML
schemas for generating application-specific database
schemas. They also provide methods for exporting
database data into XML form as well as querying
and transforming these forms using XML query lan-
guages. Consequently, these systems can be classified
as semi-structured since they do not make use of XML
schema information for better performance. Neverthe-
less, there are some systems that can be classified as
schema-based, such as the Niagara project [14]. The
basic assumption of the latter systems is that schema
description is valuable information that can be used in
optimizing storage and queries for XML data.

XML schema descriptions may contain nested ele-
ments in many levels, and thus they closely resemble
nested collections of elements, rather than flat rela-
tional tables. Schema-based approaches based on the
relational database technology, such as the Niagara
project [14], have had moderate success so far, mostly
due to the normalization of the nested XML structures
into flat tables, which may require many joins for re-
constructing the original XML data. Tree-structured
data are more naturally mapped to nested objects than
to flat relations, while navigations along XML paths
are more easily expressible in term of OODB path ex-
pressions than in terms of joins. In addition, the query
language of the ODMG standard for object-oriented
databases [4], OQL, already provides the functionality
for performing very complex operations on XML data,
such as string pattern matching, sorting, grouping, ag-
gregation, universal quantification, and random access
of XML subelements, which are essential for any real-
istic XML query language. Thus, OQL can become a
full-fledged XML query language with minimal effort.
Relational languages, on the other hand, do not al-
low query nesting at arbitrary points in a query, such
as in group-by values and in the query results, which
makes the manipulation and construction of XML data
very difficult. Consequently, we believe that OODB
technology has a better potential than relational tech-
nology to become a good basis for storing and han-
dling XML data. Even though there is already work
on using OODBs for XML data, such as the work of
Christophides, et al [7] and the Lore project [11], there

are still many open problems related to query process-
ing and optimization.

Inspired by the Niagara project [14], we believe that
there are still many opportunities in using the already
established database management technology for stor-
ing and handling XML data. Our claim is that schema
description is valuable information that can be used in
optimizing storage and queries for XML data. For ex-
ample, if XML data were stored as trees, then each
tree node must be allowed to have an undetermined
number of children since XML elements may contain
multiple subelements. This naturally leads to a nested
list implementation of the XML data, which requires
multiple deeply nested list scans to retrieve informa-
tion from deep inside the tree structure. This may
lead to bad performance, which can be avoided if we
knew exactly how many children each tree node has,
since we could have used records instead of lists. This
information can be asserted from the schema.

In this paper, we present a new XML query lan-
guage, called, XML-OQL, which is basically a small set
of syntactic extensions to OQL. Our query language re-
sembles current related proposals, such as XQuery [5]
and Quilt [6], but is more uniformly integrated with
OQL and has precise semantics. Nevertheless, we be-
lieve that our framework can be easily applied to other
XML query languages as well.

We also present a framework that handles both
schemarless (semi-structured) and schema-based XML
data uniformly. We describe a schema-less mapping
of XML data to OODB objects using a fixed ODMG
ODL schema, in the same spirit as the core inter-
face proposed for the XML Document Object Model
(DOM) [16]. We then present a method for translat-
ing XML queries into ODMG OQL queries over that
fixed schema. We identify the problems caused by the
lack of schema information and then present a schema-
driven translation to address these problems. These
schema-guided translations are the focus of this pa-
per, since they have a potential for great performance
improvement. We give extensions to the type system
of ODL to incorporate XML types and a type system
to type-check XML queries. We provide a number of
compositional algorithms for mapping XML types to
ODL schemas and for translating XML queries into
OQL queries. Our type system allows a mixture of
typed and untyped XML data, where parts of the XML
data may have a fixed schema while others may be
schema-less.

Our  starting point is the work Dby
Christophides, et al [7] on storing and handling
SGML data with OQL, but we go beyond that by
supporting a type system well integrated with that
of ODMG ODL that supports both semi-structured
and schema-based XML data. Furthermore, our
query language supports XML data construction
in the form of XML tags, a feature now present in



most XML query languages. Unlike the related work,
we provide precise compositional semantics to our
query language. To our knowledge, this is the first
attempt to give operational semantics to a non-trivial
XML query language in the form of compositional
transformation rules. Instead of inventing yet another
algebra or calculus for expressing our semantic trans-
formations, the target of our transformations is OQL,
which, not only has precise semantics in the form of
object algebras and calculi [9, 8], but has also been
the focus of various optimization techniques, such
as path indexing, path materialization, and query
decorellation. These optimizations can now be used
to speed up XML queries. Schema information is an
indispensable component of our transformations. It
is not only used to disambiguate terms with multiple
interpretations, such as wildcard tag projections, but
is also used in choosing the storage format for the
XML data and in generating OQL code guided by
the choice of storage. Because of this, XML data are
stored in a more compact form and are manipulated
more effectively compared to the use of a default
schema-less mapping. The produced OQL code is as
fast as one would have written by hand. For example,
pointer dereferencing through an IDref attribute,
which may link different XML documents, is simply
mapped to an object reference. Thus, our system
offers a high degree of data independence in which
storage and access details are decided by the system
but are hidden from the user.

Our translation schemes from XML-OQL into plain
OQL are compositional, that is, the translation of an
XML-OQL expression does not depend on the context
in which it is embedded; instead, each subexpression
is translated independently, and all translations are
composed to form the final OQL query. This prop-
erty makes the soundness of our translations easy to
prove. Even though compositional translations are
easy to express and verify on paper, the produced
translations may contain many levels of nested queries,
which can be overwhelmingly slow if they are inter-
preted as is. Hence, essential to the success of our
framework is an OODB system that can support our
translations effectively. We have already built a fully
functional, high-performance OODB management sys-
tem, called lambda-DB [10], as part of our previous
research. This system has a sophisticated query op-
timizer that unnests all nested queries, materializes
path expressions into pointer joins, uses a cost-based
polynomial-time heuristic for join ordering, and uses
a rule-based cost-driven optimizer to generate phys-
ical plans. Furthermore, its query evaluation engine
is stream-based and supports many evaluation algo-
rithms, including external sorting, block nested loop,
indexed nested loop, pointer join, sort-merge join, and
group-by. Lambda-DB is a good choice for implement-
ing our framework, because, unlike commercial sys-

tems, lambda-DB performs complete query unnesting,
which is essential for the performance requirements of
the framework.

This paper is organized as follows: Section 2 de-
scribes a small number of syntactic extensions to OQL
to make it a full-fledged XML query language. Sec-
tion 3 describes our first attempt in storing and han-
dling XML data using an ODMG database. In this
attempt, we do not make use of any schema informa-
tion; instead, XML data are stored in a tree-like form
such that a tree node is an XML element that has
a list of children nodes as subelements. We will see
that this approach is problematic for many reasons,
notably because it is inefficient. The main contribu-
tion of this paper is given in Section 4, which describes
our schema-driven mapping of data and queries. Fi-
nally, Section 5 reports on a prototype implementation
of our framework.

2 The XML Object Query Language

Our XML query language is an extension of stan-
dard OQL [4]. It captures all the important features
found in most recent XML query languages, includ-
ing XQuery [5] and Quilt [6]. It is not difficult to ex-
tend the OQL syntax with special constructs to handle
XML data because these data have a tree-like struc-
ture that can be naturally mapped to linked objects.
In fact there are several proposals for such extensions,
such as POQL [7], Ozone [13], Lorel [11], WebOQL [2],
and X-OQL [1]. Instead of using one of the proposed
languages, we developed our own, called XML-OQL,
because its syntax is better suited for our translations
than other proposals. Unlike other proposals, XML-
OQL was designed to have clear semantics in the form
of a well-defined compositional translation into stan-
dard OQL (which in turn has clear formal semantics in
the form of complex object algebras and calculi [9, 8]).
It also supports a decidable type-checking system, well
integrated with the type-checking system of OQL.

XML-OQL is essentially OQL extended with XML
path expressions and XML data constructions. For
example, the following XML-OQL query:

select list <bib><author>b.author.lastname </author>,
<title>b.title</title>,
<related>select list <title>r.title</title>

from r in b.Qrelated_to
</related>
</bib>
from bs in retrieve( “bibliography”).bib.vendor.book,
b in bs
where b.year>1995 and count(b.author)>2
and b.title like “% computer %"

retrieves information about books written by more
than two authors, published after 1995, and contain-
ing the word “computer” in their title, along with the
titles of their related documents. It conforms to the
following partial DTD:



<!ELEMENT bib (vendor*)>

<IELEMENT vendor (name, email, book*)>

<IATTLIST vendor id ID #REQUIRED>

<IELEMENT book (title, publisher?, year?, price, author+)>
<IATTLIST book ISBN ID #REQUIRED>

<IATTLIST book related_to IDrefs>

<IELEMENT author (firstname?, lastname)>

where the rest of the elements are #PCDATA.

OQL is a very powerful functional query language
that allows complex expressions to be composed from
simpler ones. By following the OQL philosophy, the
XML-OQL syntactic extensions to OQL are allowed to
appear at any place an OQL expression is expected, in-
cluding in complex aggregations, universal quantifica-
tions, sorting, and group-bys. In addition, ODL data
can be converted to XML data, and vice versa, and
both may be mixed together in the same query.

XML data in our framework are either schema-less
(semi-structured) data or schema-based data. This
distinction is hidden from programmers: if schema-less
XML data are assigned a schema and, thus, become
schema-based, queries do not need to be changed. The
optional schema information is used in catching errors
at compile-time rather than run-time, in disambiguat-
ing terms with multiple interpretations such as wild-
card tag projections, in choosing the storage format for
the XML data, and in generating efficient OQL code
guided by the choice of storage.

XML elements are constructed using the following
syntax in XML-OQL:

<tag ag = Uy ... QG = Up>eq, ..., en</tag>

for m,n > 0. This expression constructs an XML el-
ement with name, “tag”, attributes ai,...,an,, and
subelements ey, ...,e, for content. Each attribute a;
is bound to the result of the expression u;. XML data
can be accessed directly from a database by name,
retrieve( “bibliography”), or can be downloaded from a
local file or from the web using a URL address, such
as document( “http://www.acm.org/xml/journals.xml”).
The tree structure of XML data can be traversed using
path expressions of the form:

e. A projection over the tag name A

e.. projection over any tag

e.x all subelements of e at any depth
e.@QA projection over the attribute A of e

the subelements of e that satisfy e’
the subelement of e at position €'

e[\v — €]
ele']

where e and e’ are XML-OQL expressions, A is a tag
or an attribute name, and v is a variable. Filtering is
an unambiguous version of XPath’s element filtering:
For each subelement v of e, it binds the variable v to
the subelement and evaluates the predicate e’. The
result is all subelements of e that satisfy e’. The scope
of variable v is within the expression e’ only. Note that

e.A is slightly different from the path expression e/A
found in languages based on XPath, since e.A strips
out the outer tag names <A>...</A> from e. Note
also that our syntax allows IDref dereferencing, as is
done for r.title in the inner select-statement of our ex-
ample query, since variable r is an IDref that references
a book element.

3 Querying Schema-Less XML Data

In our first attempt, we store XML data using a fixed
ODL schema without taking into account any type
information about the XML data. Then we present
a framework for translating XML-OQL queries into
standard OQL queries over this fixed schema. In the
next section, we will do the same translation guided by
schema information, which will result in more efficient
queries.

Figure 1 shows a possible ODL schema for
storing schema-less XML data. An element pro-
jection e.A, where e is an expression of type
list( XML_element ), can be translated into
the OQL expression tag_projection(e,“A”) of type
list{ XML_element ), defined as follows in OQL:

define tag_projection
(e: list{ XML_element ), tag_name: string )
: list{ XML_element ) as
select list y
from x in e,
y in ( case x.element of

PCDATA: list(),

TAG: if x.element.tag.name = tag_name
then x.element.tag.content
else list()

end );

where the select list syntax is an extension to stan-
dard OQL that allows the construction of list collec-
tions by a select-from-where query, much like the se-
lect distinct allows the construction of sets rather
than bags. The case expression is another extension
to OQL that allows the decomposition of union val-
ues. The above query scans the list of subelements
of all elements in e to find those that have the tag
name, tag_name. Since there may be several elements
with the same tag name, or no elements at all, it re-
turns a list of elements. For non-matching elements,
the empty list, list(), is returned.

Projections of the form e.. are translated into
any_projection(e), which is similar to tag_projection
but with a true if-then-else condition. Wildcard
projections, e.x, require a transitive closure, which is
not supported directly in OQL but can be simulated
with a recursive function. More specifically, e.x
is translated into wildcard_projection(e), defined as
follows:



enum attribute_kind { CDATA, IDref, ID, IDrefs };
enum element_kind { TAG, PCDATA };

union attribute_type switch (attribute_kind)

{ case CDATA: string value;
case |Dref: string id_ref;
case |Drefs: list( string ) id_refs;
case ID: string id;

ki

struct attribute_binding

{ string name;
attribute_type value; };

struct node_type {
string name;
list( attribute_binding ) attributes;
list( XML_element ) content;
s
union element_type switch (element_kind)
{ case TAG: node_type tag;
case PCDATA: string data;

class XML _element ( extent Elements )
{ attribute element_type element; };

Figure 1: The ODL Schema for the Schema-Less Storage of XML Data

define wildcard_projection
(‘e list( XML_element ) ) : list{ XML_element ) as
e + ( select list y
from x in e,
y in ( case x.element of
PCDATA: list(),
TAG: wildcard_projection
(x.element.tag.content)
end ) );
where + is list concatenation. An attribute projection
e.@A is translated into attribute_projection(e,“A"),
which has signature:

attribute_projection ( e: list{ XML_element ),
aname: string ) : list( attribute_type )

and can be easily defined as an OQL query. Derefer-
encing an IDref attribute is expensive for schema-less
XML data because it requires the scanning of the
class extent, Elements, to find the XML element whose
ID is equal to the IDref value. It has signature:

deref ( idrefs: list{ attribute type ) ) : list{( XML_element )

Figure 2 presents the translation rules for XML-
OQL path expressions. The notation e — €' means
that e is translated into €', the assertion e : ¢t means
that expression e has type ¢, and a fraction is a con-
ditional assertion. Rule (U4) requires that the type
of e is list{ XML_element ), to distinguish a regular
OQL projection from an XML projection. Rule (U5)
enforces an IDref dereferencing if e is the result of an
attribute projection (which is indicated by the type of
e). Rule (U6) converts a path indexing into a list in-
dexing (to differentiate them, bold-faced square brack-
ets indicate list indexing while regular square brackets
indicate path indexing). Finally, Rule (U7) translates
a path filtering into a select-list query.

An element construction of the form

<tag a; =uy ... Ay = um>eq, ..., e,</tag>

allows expressions wu; of type string and expressions
e; of one of the following types: XML_element,

list( XML _ element ), string, or list{ string ). It is

translated into the OQL expression:

XML _element(element: element_type( TAG: struct(
name: tag, attributes: list(vi,...,vm),
content: (s1+s2+ -+ 8n) )))

where v; is attribute_type(CDATA: u;) and s; is the

translation of e; that depends on the type of e;. That

is, if e; is of type string, then s; is
list(XML_element(element: element_type(PC_DATA: ¢;)))

while, if e; is of type list( string ), then s; is

select list XML _element(element: element_type(PC_DATA: v))

from v in e;

4 Schema-Guided Translation

Our translation scheme for XML-OQL queries against
schema-less XML data is problematic for many rea-
sons: First, projections are very expensive since they
require nested list scans. If we knew the schema, we
could have used records to store the content of ele-
ments instead of lists. In that case, XML-OQL pro-
jections would have been translated into the more effi-
cient record projections. In addition, programmers do
not like to learn the complete details of an XML struc-
ture, so they tend to write queries with many wild-
card projections. If transitive closures were used to
implement wildcard projections, programmers would
tend to avoid them due to their high cost, which
defies the declarativeness of the language. Second,
pointer dereferencing for IDrefs is very expensive in
this framework. We would like to have it in constant
time, as it is done in OODBs. Finally, the predi-
cate b.year>1995 in the example query is not type-
correct because b.year is translated into an OQL ex-
pression of type list{ XML_element ). This list may
be empty if there are no subelements in b with tag
name, year, or it may contain multiple elements with
the same tag name. This leads to ambiguity. In ad-
dition, it is not clear what the result of comparing a



e.. — any_projection(e) (U1)
e.x+ — wildcard_projection(e) (U2)
e.QA — attribute_projection(e, “4”) (U3)

e: list{ XML_element )
e.A — tag projection(e, “A”)

(U4)

e: list{ attribute_type ), a € {4,QA, _ *}

e[\v = €'] — select list v from v in e where ¢/  (U7)

Ub
e.a — deref(e).a (US)

e : list{ XML _element ), ¢’ : integer
ele’] — list(e[e'])

(U6)

Figure 2: Default Translation of XML-OQL Path Expressions

string with an integer is. The correct predicate should
have either been exists x in b.year: x.data>"“1995" or
element(b.year).data>"1995".  In fact, under this
translation scheme, most predicates that refer to XML
data must undergo a similar treatment. This is quite
tedious and error-prone. The Lore project [11] ad-
dresses this problem by implicitly coercing datatypes
and by concatenating the text content of the set-valued
attributes, which may not be what the programmer
has intended. Other XML query languages, such as
Quilt [6], allow this syntax but do not provide seman-
tics. We address these problems in this section by
making use of the type information to disambiguate
projections and to translate XML-OQL queries into
more efficient programs.

4.1 The XML-ODL Type System

In this section, we extend the ODL syntax to handle
XML data. Our goal is to integrate XML schema in-
formation with ODL types into a single type system,
called XML-ODL, and use it to translate XML-OQL
queries. XML types are defined in XML-ODL using a
special type declaration of the form

typedef XML[¢] type_name;

where the syntax of ¢ is described in Figure 3. It de-
fines a new XML type with name type_name. Following
this declaration, type_name can appear at any point an
ODL type is expected. Furthermore, anonymous XML
types of the form XML[t] can also appear at any point
an ODL type is expected, but cannot be referenced by
other XML types through IDrefs.

Our XML types are regular expressions and are in-
fluenced by XDuce [12]. Even though at a first glance
they seem different from the proposed XML document
description standards, such as DTD and XML Schema,
they can capture the most important features of these
proposals. Concatenation represents the type of XML
element pairs. An alternation is a union type and rep-
resents a choice of two types. The optionality operator
can be defined in terms of alternation (t? =t|()) but
is treated separately. The combination of a labeled
type with a type with attributes defines the type of an
XML element with attributes. We decided to separate
attributes from labeled types to make the semantics
easier to express. Concatenation and alternation are

left-associative and concatenation has identity, (), that
is, t, () = (), t = t. Similarly, repetition and option-
ality have identity, (), that is, ()* = ()? = (). There
are other normalization rules to simplify types, such
as t** = t*, t|t = t, and (¢*,t*) = t*, which are not
used. The type s; of an attribute can be a path (if
it is a single IDref) or path* (if it contains multiple
IDrefs). A path can precisely specify the location of
the ID attribute that the IDref refers to. If it points
within a different XML type, path starts with the XML
type name. Otherwise, if the type name is missing, it
is assumed to be the name of the current XML type.
Since one of our goals is to integrate schema-less and
schema-based XML data in the same framework, the
attribute type s; is also allowed to point to schema-less
elements (when s; is equal to any).

For example, the DTD given in Section 3 can be
captured by the following XML-ODL type:

typedef XML [bib[vendor[ { id: ID }
( name[string], email[string],
book[ { ISBN: ID, related_to: bib.vendor.book.ISBN* }
( title[string], publisher[string]?,
year[integer]?, price[integer],
author[firstname[string]?,lastname[string]],

author][firstname[string]?,lastname[string]]* )
*

]1* 1] bibliography;

This defines a new XML type, called bibliography. The
attribute related_to is a list of IDrefs, which are ISBNs
of other books. Notice that author elements appear
twice in a book; the first author element is the first
book author while the second author element is the
list of coauthors. This is a standard way of expressing
a typet in terms of type*. This will also serve as an
example when we describe a method to disambiguate
tag projections. Finally, we will use the class biblio
with extent bibliographies for bibliography objects that
contains an attribute entry of type bibliography.

The XML-OQL query given is Section 3 has the
following type in our type system:

list{ XML[bib[author[string,string*],title[string],
related[title[string]*]]] )

that is, it returns a list of XML objects.



t == any an arbitrary XML element s .— ID
| 0 identity imitive.t
| ot] labeled (tagged) type I ZIIl;,m veype
|  {vi:si,...,vn 8.}t a type with attributes | path
| t1, %2 concatenation *
) | path
| t1|t2 alternation
|t repetition path = XML _type_name
| 7 optionality | v
|  primitive_type integer, string, image, etc | path
Figure 3: Syntax of the XML Types (where ¢, t1,t> are XML types, v,v1,...,v, are names, and s, 81, ..., 8, are
attribute types)
T (J[any], p) = list{ XML_element ) (T1)
T(IOL,p) = struct { } (T2)
T, p) = T([t], pv) (T3)
a reference to a new class C:
class C (extent _C key vi) {
T([{v1: 81550 sn}tlp) attribute 7 ([t], p) info; (T4)
where s=ID - attribute S([s1]) v1; ...; attribute S([sn]) vn; };
bind path p.vg to Cin o
and path p.vg to {v1 : 81,...,0n 1 Sp}tin d
T({v1:s1,.. 00 :8n}t],p) = struct { T([t], p) info; S([s1]) v1; ---; S([sn]) vn; } (T5)
T([tr, t2D,p) = struct { T([t1], p) fst; T([t2], p) snd; } (Té6)
T([t1|t2],p) = struct { union kind tag; 7 ([t1], p) left; T ([t2], p) right; } (T7)
T(t],p) = list( T([t],p) ) (T8)
Tt p) = T(Itl,p) (T9)
T ([primitive_type], p) = primitive_type (T10)
S([primitive_type]) = primitive_type (T11)
S([path]) = olpath] (T12)
S([path]™) = list{ o[path] ) (T13)
S([s]) = string otherwise (T14)

Figure 4: Mapping XML-ODL to ODL

class C2 (extent _C2 key id) {

attribute string id; };
class C1 (key ISBN) {

attribute string ISBN;
attribute list( C1 ) related_to; };

attribute struct{ struct{ string fst; string snd; } fst;
list{ C1 ) snd; } info;

attribute struct{ struct{ struct{ struct{ struct{ string fst; string snd; } fst;

integer snd; } fst;
struct{ string fst; string snd; } snd; } fst;
list( struct{ string fst; string snd; } ) snd; } info;

// vendor’s name and email
// books by this vendor

integer snd; } fst; // year

// price
// first author
// coauthors

// title and publisher

Figure 5: The ODL type of the Bibliography Schema



R({---,A:sk,...}t],z,e.QA) = z.A (R1)
R([A[f]], z,e.A) = =z (R2)
R([A[t]], ze.) = = (R3)

_ x if R([t], z,e.x) = struct()
R(AE], z,e%) = { struct(fst: =, snd: R([t], z,e.x)) otherwise (R4)

R([t1], z, e-a) if R([t2], z, e.a) = struct()

_ R([t2], z,e.a) if R([t1], z, e.a) = struct()
R(lts, 2] @, e.0) - = struct(fst: R([t1], z.fst, e.a), (R5)

snd: R([t2], z.snd,e.a)) otherwise
if z.tag=INL
R([t1|t2], xz,e.0) = then struct(tag: INL, left: R([t1], z.left, e.a), right: NULL) (R6)
else struct(tag: INR, left: NULL, right: R([t2], z.right, e.a))
X _ struct() if R([t], z, e.a) = struct()

R[] @,e0) = { select list R([t],v,e.a) from v in = otherwise (R7)
R([t?], z,e.a) = if x =NULL then NULL else R([t], z, e.a) (R8)
R([any],z,e) = handled in Section 2 by Rules (U1) through (U7) (R9)
R[],z ele]) = ale] (R10)
R([t'], z,e[\v = €¢]) = select list R([t],v,e) from v in & where ¢’ (R11)
R([t],z,e) = struct() otherwise (R12)

Figure 6: Translation of an XML-OQL Path Expression into OQL (a € {4,QA, _, x})

4.2 Mapping XML-ODL to ODL

The rules for mapping XML types to ODL are given
in Figure 4. More specifically, XML[t] is mapped to
T ([t], type-name), where type.name is the name of
the current XML type. The semantic brackets, [],
are used in denotational semantics to separate syn-
tactic structures from semantic operations. The extra
parameter p in 7 ([t], p) is a path expression similar
to the IDref path in the attribute types of Figure 3.
Rules (T4) and (T5) map types with attributes. If a
type has an attribute of type, ID, then a new class,
C, is declared and the type is mapped to the class
name (Rule (T4)); otherwise, it is mapped to a sim-
ple ODL struct (Rule (T5)). The environment lists o
and § contain information about the generated classes.
The environment ¢ binds the path expression of the
ID attribute to the class name, while the environment
é binds the same path to the XML type itself. The
environment ¢ is used in translating IDrefs into class
references in Rules (T13) and (T14). To avoid am-
biguity, no two classes are allowed to be assigned to
the same path. Alternation is implemented as a struct
in Rule (T7) because ODL does not support polymor-
phic union types and, therefore, union values cannot
be constructed on the fly. The union tag is of type
enum {INL,INR} and is used in choosing between the
left and the right components of the struct. Optional-
ity is simply mapped to a type that allows null values,
which applies to every ODL type.

For example, the ODL type of the bibliography
schema is list( C2 ), given in Figure 5, where the class
C2 captures the attributes and content of a vendor (it

is a class because the vendor type has an ID attribute),
and class C1 captures the element bib.

4.3 Translating XML-OQL into OQL

The OQL translation of an XML-OQL projection e.a,
where a € {4,QA, _, x}, is R([t],z,e.a), is given in
Figure 6. The OQL expression z in R([t], z,e.a) is
the implementation of e, while ¢ is the type of e.

As an example of an XML-OQL translation,
biblio.entry.bib is translated into the OQL expres-
sion biblio.entry. Similarly, biblio.entry.bib.vendor
is translated into select list v from v in biblio.entry
and biblio.entry.bib.vendor.book is translated into:

select list (select list u from u in w.info.snd)
from w in (select list v from v in biblio.entry)

which, after basic query unnesting, is equivalent to:

select list (select list u from u in v.info.snd)
from v in biblio.entry

Thus, the line “bs in biblio.entry.bib.vendor.book, b in bs”
in the example query is translated into:

bs in ( select list (select list u from u in v.info.snd)
from v in biblio.entry ), b in bs

which, after basic query unnesting, is equivalent to
v in biblio.entry, b in v.info.snd. The translation of
b.author.lastname in the same query is interesting be-
cause the tag name author appears twice in the book b.
Rule (R10) applies to all the subelements of the book
b except the two author subelements. The last name



of the first author is retrieved from b.info.fst.snd.snd
while the last names of the coauthors are retrieved by
select list c.snd from ¢ in b.info.snd. Consequently,
b.author.lastname is translated into:

struct( fst: b.info.fst.snd.snd,
snd: ( select list c.snd from c in b.info.snd ) )

XML-OQL allows XML element constructions of
the form:

<taga; =uy ... Ay = up>eq, ..., e,</tag>

The type T; of the expression e; is allowed to be one
of the following types:

T == XMLt
| struct{ Ti fst; T snd; }
| list{ T )
| list¢{ XML_element )
|  primitive_type

which can be unambiguously converted to an XML[t;]
type for e¢;. In addition, each u; must be of a primi-
tive type, a class reference, or a list of class references,
where the class name in the two latter cases must be
a member of the environment, . This also unambigu-
ously generates a type ¢} for u;. Thus the type of the
above element construction is:

XML[{a1 : t},...,am  th,} (t1,- .-, tn)]
The translation of an XML-OQL construction to OQL
follows the type translation and is straightforward.
Therefore, an XML construction without attributes,
<tag>ey, ..., enp</tag>, is translated into:
struct(fst: ..., struct(fst: ey, snd: e2) ..., snd: e,)

while a construction with attributes of the form
<tag ag = Uy ... Gy = Uy >eq, ..., en</tag>,is first
translated into a construction without attributes:
struct(info: <tag>eq, ..., en</tag>,
a1: UL, -y G’ Upp)

Using the translation rules for XML-OQL pro-
jections and constructions, the example XML-OQL
query is translated into the following OQL query:

select list struct( fst: struct( fst: struct( fst: b.info.fst.snd.snd,

snd: ( select list c.snd from c in b.info.snd ) ),
snd: b.info.fst.fst.fst.fst.fst ),
snd: ( select list r.info.fst.fst.fst.fst.fst
from r in b.related_to ) )
from biblio in bibliographies,
v in biblio.entry, u in v.info.snd
where b.info.fst.fst.fst.snd>1995
and count(b.info.fst.snd)>2
and b.info.fst.fst.fst.fst.fst like “% computer %"

It does not really matter that our translations contain
long chains of projections since record projections are
converted into address offsets at compile time. Note
also that there is an implicit pointer dereferencing in
the path r.info.fst.fst.fst.fst.fst since r is a reference to
the class C1.

5 Implementation

We have already implemented the schema-less trans-
lation from XML-OQL to OQL using the lambda-DB
object-oriented database management system [10],
which is built on top of the SHORE object storage
system [3]. This implementation is now part of the
latest release (1.6) of lambda-DB and is available
at http://lambda.uta.edu/lambda-DB.html. The
schema-guided translations will require more sub-
stantial changes to the underlying OODB engine,
especially to the type-checker and the query trans-
lator. We believe that we will gain a significant
performance improvement when we implement our
schema-driven framework. To support this claim,
we compiled the bibliography XML-ODL schema
into a regular ODL schema by hand. Figure 7.(a)
indicates that the schema-less data take about six
times more space than the schema-based data. Then
we compared the performance of the following queries
for various database sizes:

Q1: select <book>x.author,<title>x.title</title></book>
from x in retrieve(” books” ).vendor.books.book

Q2: select a.firstname, a.lastname, b.title
from v in Vendors, b in v.books, a in b.authors

Query Q1 is in XML-OQL and is over the schema-less
database while query Q2 is in OQL and is over the
schema-based database. The two queries have been
tested for various random databases, containing be-
tween 100 and 2000 books. The platform used for these
experiments was a Pentium III/800MHz/256MBs,
running RedHat Linux 7.0. The SHORE client buffer
was set to 1IMB. We can see that a schema-less query
takes about four times more time than that of the
schema-based query. We expect more substantial per-
formance gain for complex XML-OQL queries that
contain many path expressions, multiple documents,
and IDref dereferencing.

The above preliminary results are encouraging but
are far from complete. In the near future, we are plan-
ning to compare the performance of our schema-based
implementations with that of our schema-less imple-
mentations for a wider spectrum of queries.

6 Conclusion

We have presented a framework for storing XML data
into an OODB management system and for translat-
ing XML queries into OQL queries based on XML
schema information. While schema-less XML data
may benefit from a semi-structure model and alge-
bra, if a schema is given, XML data can be naturally
mapped to the nested storage structures of an OODB
system. Using schema information, the type-checker
can resolve ambiguities and fill-out missing details in
a query, even in the presence of complex patterns in
the path expressions. This is accomplished at compile-
time, rather than evaluation-time, and resembles the



e I T T T T T T T T
2e+06 |- schemaless —— _
schema-based —--
$  1.5e+06 [~ _
3
£
8
@ 1e+06 [ _
500000 |~ _
’ L 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
(@) Number of books

CPU timein secs

2

18

16

14

12

1

0.8

0.6

0.4

0.2

0

- schemarless —
schemarbased —--

A g YT ! ! !
0 200 400 600 800 1000 1200 1400 1600 1800 2000
(b) Number of books

Figure 7: Comparing Schema-Less with Schema-Based Implementations

pattern decomposition techniques in functional pro-
gramming languages. Our framework does not require
any fundamental change to the query optimizer and
evaluator of an OODB system, since XML queries are
translated into OQL code after type-checking but be-
fore optimization.

Acknowledgments: This work is supported in part
by the National Science Foundation under the grant
I1S-9811525 and by the Texas Higher Education Ad-
vanced Research Program grant 003656-0043-1999.

References

[1]

[2]

[3]

[4]

[7]

S. Abiteboul, et al. XML Repository and Active
Views Demonstration. In VLDB’99, pages 742—
745, 1999.

G. Arocena and A. Mendelzon. WebOQL: Re-
structuring Documents, Databases, and Webs. In
ICDE’98, pages 24-33, Feb. 1998.

M. Carey, et al. Shoring Up Persistent Applica-
tions. In SIGMOD’94, pages 383-394, May 1994.

R. Cattell, editor. The Object Data Standard:
ODMG 3.0. Morgan Kaufmann, 2000.

D. Chamberlin, D. Florescu, J. Robie, J. Simeon,
and M. Stefanescu. XQuery: A Query Language
for XML . W3C Working Draft. Available at
http://www.w3.org/TR/xquery/, 2000.

D. Chamberlin, J. Robie, and D. Florescu.
Quilt: An XML Query Language for Heteroge-
neous Data Sources. Workshop on the Web and
Databases (WebDB’00), Dallas, Tezas, pages 53—
62, May 2000.

V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. From Structured Documents to Novel
Query Facilities. In SIGMOD’9/4, pages 313-324,
May 1994.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Cluet and C. Delobel. A General Framework
for the Optimization of Object-Oriented Queries.
In SIGMOD’92, pages 383—-392, June 1992.

L. Fegaras and D. Maier. Optimizing Object
Queries Using an Effective Calculus. ACM Trans-
actions on Database Systems, Dec. 2000.

L. Fegaras, C. Srinivasan, A. Rajendran, and

D. Maier. A-DB: An ODMG-Based Object-
Oriented DBMS. In SIGMOD’2000, page 583,
May 2000.

R. Goldman, J. McHugh, and J. Widom. From
Semistructured Data to XML: Migrating the Lore
Data Model and Query Language. Workshop on
the Web and Databases (WebDB’99), Philadel-
phia, Pennsylvania, pages 25-30, June 1999.

H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
Expression Types for XML. In ACM SIGPLAN
International Conference on Functional Program-
ming (ICFP’00), Montreal, Canada. ACM Press,
Sept. 2000.

T. Lahiri, S. Abiteboul, and J. Widom. Ozone:
Integrating Structured and Semistructured Data .
In 7th International Workshop on Database Pro-
gramming Languages, DBPL’99, Kinloch Ran-
noch, Scotland, UK, LNCS volume 1949, pages
297-323. Springer, Sept. 1999.

J. Shanmugasundaram, et al Relational
Databases for Querying XML Documents: Lim-
itations and Opportunities. In VLDB’99, pages
302-314, 1999.

J. Widom. Data Management for XML: Research
Directions. IEEE Data Engineering Bulletin, Spe-
cial Issue on XML, 22(3):44-52, Sept. 1999.

World Wide Web  Consortium (W3C).
Extensible Markup Language (XML).
http://www.w3.org/XML/.



