Query Processing of Streamed XML Data

Leonidas Fegaras, David Levine, Sujoe Bose, and Vamsi Chaluvadi

Department of Computer Science and Engineering
The University of Texas at Arlington
416 Yates Street, P.O. Box 19015
Arlington, TX 76019-19015

email: fegaras@cse.uta.edu

Abstract

We are addressing the efficient processing of continuous XML streams, in which the server broadcasts
XML data to multiple clients concurrently through a multicast data stream, while each client is fully
responsible for processing the stream. In our framework, a server may disseminate XML fragments from
multiple documents in the same stream, can repeat or replace fragments, and can introduce new fragments
or delete invalid ones. A client uses a light-weight database based on our proposed XML algebra to cache
stream data and to evaluate XML queries against these data. The synchronization between clients and
servers is achieved through annotations and punctuations transmitted along with the data streams. We
are presenting a framework for processing XML queries in XQuery form over continuous XML streams.
Our framework is based on a novel XML algebra and a new algebraic optimization framework based on
query decorrelation, which is essential for non-blocking stream processing.

1 Introduction

1.1 Motivation

XML [31] has emerged as the leading textual language for representing and exchanging data on the web.
Even though HTML is still the dominant format for publishing documents on the web, XML has become the
prevalent exchange format for business-to-business transactions and for enterprise Intranets. It is expected
that in the near future the Internet will be populated with a vast number of web-accessible XML files. One
of the reasons of its popularity is that, by supporting simple nested structures of tagged elements, the XML
format is able to represent both the structure and the content of complex data very effectively. To take
advantage of the structure of XML documents, new query languages had to be invented that go beyond the
simple keyword-based boolean formulas supported by current web search engines.

There are several recent proposals for XML query languages [17], but none has been adopted as a
standard yet. Nevertheless, there is a recent working draft of an XML query language released by the
World-Wide Web Consortium (W3C), called XQuery [7], which may become a standard in the near future.
The basic features of XQuery are illustrated by the following query (taken from a W3C web page [31]):

<bib>{ for $b in document(“http://www.bn.com”)/bib/book
where $b/publisher = “Addison-Wesley" and $b/Q@year >1991
return <book year={ $b/@year }> { $b//title } </book>

} </bib>

which lists books published by Addison-Wesley after 1991, including their year and title. The document(URL)
expression returns an entry point to the XML data contained in the XML document located at the specified
URL address. XQuery uses path expressions to navigate through XML data. For example, the tag selection,
$b/publisher, returns all the children of $b with tag name, publisher, while the wildcard selection, $b//title,
returns all the descendants of $b (possibly including $b itself) with tag name, title. Influenced by modern
database query languages, such as the OQL language of the ODMG standard [6], XQuery allows complex

queries to be composed from simpler ones and supports many advanced features for navigating and restruc-
turing XML data, such as XML data construction, aggregations, universal and existential quantification,
and sorting.

There have been many commercial products recently that take advantage of the already established
database management technology for storing and retrieving XML data, although none of them fully supports
XQuery yet. In fact, nearly all relational database vendors now provide some functionality for storing and
handling XML data in their systems. Most of these systems support automatic insertion of canonically-
structured XML data into tables, rather than utilizing the XML schemas for generating application-specific
database schemas. They also provide methods for exporting database data into XML form as well as querying
and transforming these forms into HTML.

The effective processing of XML data requires some of the storage and access functionality provided
by modern database systems, such as query processing and optimization, concurrency control, integrity,
recovery, distribution, and security. Unlike conventional databases, XML data may be stored in various
forms, such as in their native form (as text documents), in a semi-structured database conforming to a
standard schema, or in an application-specific database that exports its data in XML form, and may be
disseminated from servers to clients in various ways, such as by broadcasting data to multiple clients as
XML streams or making them available upon request.

Based on previous experience with traditional databases, queries can be optimized more effectively if
they are first translated into a suitable internal form with clear semantics, such as an algebra or calculus. If
XML data are stored in an application-specific database schema, then XML queries over these data can be
translated into the native query language supported by the database system, which in turn can be compiled
into its native algebraic form. A major research issue related to this approach, which has been addressed
in our previous work [14], is the automatic generation of the database schema as well as the automatic
translation of XML queries into database queries over the generated schema. On the other hand, if XML
data are stored as semi-structured data or processed on the fly as XML streams, then a new algebra is needed
that captures the heterogeneity and the irregularities intrinsic to XML data [4]. In fact, there are already
algebras for semi-structured data, including an algebra based on structural recursion [4], YATL [10, 8],
SAL [3], x-algebra [16], and x-scan [22]. None of these algebras have been used for the emerging XML query
languages yet, and there is little work on algebraic query optimization based on these algebras.

This paper is focused on the efficient processing of continuous XML streams. Most current web servers
adopt the “pull-based” processing technology in which a client submits a query to a server, the server
evaluates the query against a local database, and sends the result back to the client. An alternative approach
is the “push-based” processing, in which the server broadcasts parts or the entire local database to multiple
clients through a multicast data stream usually with no acknowledge or handshaking, while each client is fully
responsible for processing the stream [1]. Pushing data to multiple clients is highly desirable when a large
number of similar queries are submitted to a server and the query results are large [2], such as requesting a
region from a geographical database. Furthermore, by distributing processing to clients, we reduce the server
workload while increasing its availability. On the other hand, a stream client does not acknowledge correct
receipt of the transmitted data, which means that, in case of a noise burst, it cannot request the server to
resubmit a data packet to correct the errors. Stream data may be infinite and transmitted in a continuous
stream, such as measurement or sensor data transmitted by a real-time monitoring system continuously.

We would like to support the combination of both processing technologies, pull and push, in the same
framework. The unit of transmission in an XML stream is an XML fragment, which corresponds to one
XML element from the transmitted document. In our framework, a server may prune fragments from the
document XML tree, called fillers, and replace them by holes. A hole is simply a reference to a filler (through
a unique ID). Fillers, in turn, may be pruned into more fillers, which are replaced by holes, and so on. The
result is a sequence of small fragments that can be assembled at the client side by filling holes with fillers.
The server may choose to disseminate XML fragments from multiple documents in the same stream, can
repeat some fragments when they are critical or in high demand, can replace them when they change by
sending delta changes, and can introduce new fragments or delete invalid ones. The client is responsible
for caching and reconstructing parts of the original XML data in its limited memory (if necessary) and for
evaluating XML queries against these data. Like relational database data, stream data can be processed
by relational operators. Unlike stored database data though, which may provide fast access paths, the
stream content can only be accessed sequentially. Nevertheless, we would like to utilize the same database
technology used in pulling data from a server for pushing data to clients and for processing these data at

the client side with a light-weight database management system. For example, a server may broadcast stock
prices and a client may evaluate a continuous query on a wireless, mobile device that checks and warns
(by activating a trigger) on rapid changes in selected stock prices within a time period. Since stock prices
may change through time, the client must be able to cache (in main memory or on secondary storage) old
prices. Another example is processing MPEG-7 [24] streams to extract and query video context information.
MPEG-T7 is a standard developed by MPEG (Moving Picture Experts Group) and combines multimedia data
of various forms, including content description for the representation of perceivable information.

Since XML fragments are processed at the client side as they become available, the query processing
system resembles a main-memory database, rather than a traditional, secondary-storage-based database. Al-
though a main-memory database has a different back-end from a secondary-storage database, main-memory
queries can be mapped to similar algebraic forms and optimized in a similar way as traditional queries. One
difficult problem of processing algebraic operators against continuous streams is the presence of blocking
operators, such as sorting and group-by, which require the processing of the entire stream before generating
the first result. Processing these operators effectively requires that the server passes some hints, called punc-
tuations [29], along with the data to indicate properties about the data. One example of a punctuation is
the indication that all prices of stocks starting with ‘A’ have already been transmitted. This is very valuable
information to a client that performs a group-by over the stock names because it can complete and flush
from memory all the groups that correspond to these stock names. Extending a query processor to make an
effective use of such punctuations has not yet been investigated by others.

1.2 Owur Approach

This paper addresses the efficient processing of continuous XML streams, in which a server broadcasts XML
data to multiple clients concurrently. In our framework, a server may disseminate XML fragments from
multiple documents in the same stream, can repeat or replace fragments, and can introduce new fragments
or delete invalid ones. In our approach, a client uses a light-weight, in-memory database to cache stream
data and physical algorithms based on an XML algebra to evaluate XML queries against these data. The
synchronization between clients and servers is achieved through annotations and punctuations transmitted
along with the data streams. A necessary information needed by a client is the structure of the transmitted
XML document, called the Tag Structure. The server periodically disseminates this Tag Structure as a
special annotation in XML form. For example, the following Tag Structure:

<stream:structure>
<tag name="bib" id="1">
<tag name="vendor" id="2" attributes="id">
<tag name="name" id="3"/>
<tag name="email" id="4"/>
<tag name="book" id="5" attributes="ISBN related_to">
<tag name="title" id="6"/>
<tag name="publisher" id="7"/>
<tag name="year" id="8"/>
<tag name="price" id="9"/>
<tag name="author" id="10">
<tag name="firstname" id="11"/>
<tag name="lastname" id="12"/>
</tag> </tag> </tag> </tag>
</stream:structure>

corresponds to the following partial DTD:

<!ELEMENT bib (vendor*)>

<IELEMENT vendor (name, email, book*)>

<IATTLIST vendor id ID #REQUIRED>

<IELEMENT book (title, publisher?, year?, price, author+)>
<!ATTLIST book ISBN ID #REQUIRED>

<!ATTLIST book related_to IDrefs>

<IELEMENT author (firstname?, lastname)>

The Tag Structure is derived by the server from the data, rather than the type, and summarizes all the valid
paths to the data. For example, according to the above Tag Structure, /bib/vendor/name is a valid path.
The Tag Structure is used, among other things, to resolve wildcard selections in client-side XQueries. It also
allows the compression of the transmitted data and annotations by replacing tag names with id numbers. The
Tag Structure is always finite even in the case of recursive data types, such as the part-subpart hierarchy,
since even if the data stream is infinite, the nesting level of the actual data cannot grow infinitely. Tag
Structure annotations are very important and must be repeated very often by the server to cope with those
clients who connect to the stream asynchronously at undetermined times.

The most important annotations in our framework are fillers and holes. A filler has a unique hole id,
hid, referenced by hole, and a Tag Structure id (tsid):

<stream:filler hid="1234" tsid="5"> XML element </stream:filler>

which introduces a new book with ID 1234. It is a book because the Tag Structure id is 5 (the id number
of a book), which means that it can be reached from the path /bib/vendor/book. A hole can take one of the
following forms:

<stream:hole hid="1234"/>
<stream:hole hid="100 199"/>

The first form corresponds to one filler, namely to that with hid 1234, while the second form corresponds to
100 fillers, those whose hid’s range from 100 to 199.
In our framework, fragments may be repeated, replaced, or removed using the following annotations:

<stream:repeat hid="1234"> XML elements </stream:repeat>
<stream:replace hid="1234"> XML elements </stream:replace>
<stream:remove hid="1234"/>

Query processing is performed at the client side with the help of a light-weight query optimizer. A
major component of a query optimizer is an effective algebra, which would serve as an intermediate form
from the translation of abstract queries to concrete evaluation algorithms. We are presenting a new XML
algebra and a query optimization framework based on query normalization and query unnesting (also known
as query decorrelation). There are many proposals on query optimization that are focused on unnesting
nested queries [23, 18, 26, 11, 12, 9, 28]. Nested queries appear more often in XML queries than in relational
queries, because most XML query languages, including XQuery, allow complex expressions at any point in
a query. Current commercial database systems typically evaluate nested queries in a nested-loop fashion,
which is unacceptable for on-line stream processing and does not leave many opportunities for optimization.
Most proposed unnesting techniques require the use of outer-joins, to prevent loss of data, and grouping, to
accumulate the data and to remove the null values introduced by the outer-joins. If considered in isolation,
query unnesting itself does not result in performance improvement. Instead, it makes possible other opti-
mizations, which otherwise would not be possible. More specifically, without unnesting, the only choice of
evaluating nested queries is a naive nested-loop method: for each step of the outer query, all the steps of the
inner query need to be executed. Query unnesting promotes all the operators of the inner query into the
operators of the outer query. This operator mixing allows other optimization techniques to take place, such
as the rearrangement of operators to minimize cost and the free movement of selection predicates between
inner and outer operators, which enables operators to be more selective. OQur XML query unnesting method
is influenced by the query unnesting method for OODB queries presented in our earlier work [15].

If the data stream were finite and its size were smaller than the client buffer size, then the obvious
way to answer XQueries against an XML stream is to reconstruct the entire XML document in memory
and then evaluate the query against the cached document. But this is not a realistic assumption even for
finite streams. Client computers, which are often mobile, have typically limited resources and computing
power. After XQueries are translated to the XML algebra, each algebraic operator is assigned a stream-
based evaluation algorithm, which does not require to consume the entire stream before it produces any
output. Even when a data stream is finite, some operations, such as sorting and group-by with aggregation,
may take too long to complete. However, clients may be simply satisfied with partial results, such as the
average values of a small sample of the data rather than the entire database. Online aggregation [20, 21]
has addressed this problem by displaying the progress at any point of time along with the accuracy of the
result and by allowing the client to interrupt the aggregation process. Our approach is based on annotations

[p,(M)]s = {<v=T>}

[Oprea(X)]s = {t]t€[X]s, [pred]sos }
Mo, (X)]s = {<vi=twr,...;,0p =tw, > |t€[X]s}
[XUY]s = [XIs +#[Y]s
[XPUreaY]s = {tooty|ts €[X]s, ty € [Y]s, [predlsot,or, }
[ora™(X)]s = {to<v=w>|t€[X]s, we P(3ot,path),

H,pred_l]doto<v1=w> }
[AYY X)) = @/{ [headlser | ¢ € [X]s, [pred]sor }

{ [grouplsor,
[[Fv ,®,head (X)]s = o < v =@/{ [head]sor, | t2 € [X]s, [pred]sots,
group.pred [group]sor, = [grouplsor, } >
|t e [X]s }

Figure 1: Semantics of the XML Algebra

about the data content, called punctuations [29]. A punctuation is a hint sent by the server to indicate a
property about the data already transmitted. This hint takes the form of a predicate that compares a path
expression, which uses tsid’s rather than tag names, with a constant value, as follows:

<stream:punctuation property="path cmp constant"/>
For example, the following punctuation
<stream:punctuation property="/1/2[3]/5/@QISBN <= 1000"/>

Here, according to the Tag Structure, the path /1/2[3]/5@ISBN corresponds to the XPath /bib/vendor[3]/book/@ISBN.
This punctuation indicates that the server has already transmitted all books published by the 3rd vendor
whose ISBN is less than or equal to 1000. We are presenting a set of stream-based evaluation algorithms for
our XML algebraic operators that make use of these punctuations to reduce the amount of resources needed
by clients to process streamed data. For example, suppose that a client joins the above stream of data about
books with the stream of book prices provided by Amazon.com using the ISBN as a cross-reference. Then
one way to evaluate this join is using an in-memory hash join [30] where both the build and probe tables
reside in memory. When ISBN punctuations are received from both streams, some of the hash buckets in
both hash tables can be flushed from memory since, according to the punctuations received, they will not be
used again. In our framework, all punctuations are stored in a central repository at the client side and are
being consulted on demand, that is, only when the local buffer space of an evaluation operator overflows.

The rest of the paper is organized as follows. Section 2 presents a new XML algebra and a new alge-
braic optimization framework based on query decorrelation. It also presents translation rules for compiling
XQuery into an algebraic form. Our XML algebra can be used generically for processing any XML data. Sec-
tion 3 adapts this algebra to handle XML streams and presents various in-memory, non-blocking evaluation
algorithms to process these operators.

2 XML Algebra and Query Optimization
2.1 XML Algebra

We are proposing a new algebra and a new algebraic optimization framework well-suited for XML structures
and stream processing. In this section, we are presenting the XML algebra without taking into account the
fragmentation and reconstruction of XML data. These issues will be addressed in detail in Section 3.

The algebraic bulk operators along with their semantics are given in Figure 1. The inputs and output of
each operator are streams, which are captured as lists of records and can be concatenated with list append,

+. There are other non-bulk operators, such as boolean comparisons, which are not listed here. The
semantics is given in terms of record concatenation, o, and list comprehensions, { e | ... }, which, unlike the
set former notation, preserve the order and multiplicity of elements. The form @/{ - - } reduces the elements
resulted from the list comprehension using the associative binary operator, @ (a monoid, such as U, +, *, A,
V, etc). That is, for a non-bulk monoid @, such as +, we have ®/{a1,as...,a,} = a1 ®az ®--- D ay,, while
for a bulk monoid, such as U, we have ®/{aj,as...,a,} = {a1} ®{a2} ®--- ® {a,}. Sorting is captured by
the special bulk monoid @=sort(f), which merges two sorted sequences by f into one sorted sequence by f.
For example, sort(f)/{2,1,3} for f(z) = —z returns {3,2,1}.

The environment, §, is the current stream record, used in the nested queries. Nested queries are
mapped into algebraic form in which some algebraic operators have predicates, headers, etc, that contain
other algebraic operators. More specifically, for each record, d, of the stream passing through the outer
operator of a nested query, the inner query is evaluated by concatenating § with each record of the inner
query stream.

An unnest path is, and operator predicates may contain, a path expression, v/path, where v is a stream
record attribute and path is a simple XPath of the form: A, QA, path/A, path/QA, path[n], path/text(),
or path/data(), where n is an integer algebraic form. That is, these path forms do not contain wildcard
selections, such as path//A, and predicate selections, such as path[e]. The unnest operation is the only
mechanism for traversing an XML tree structure. Function P is defined over paths as follows:

P(t,v/path) = S(t.v,path)

S(t,A) = {z|=x € children(t), tag(z) = “A” }
S(t,path/A) = {=z|ve S(t,path), z € children(v), tag(z) = “A” }
S(t,path[n]) = { children(v)[n] | v € S(t,path) }

The extraction operator, p, gets an XML data source, T, and returns a singleton stream whose unique
element contains the entire XML tree. Selection (o), projection (), merging (U), and join (<) are sim-
ilar to their relational algebra counterparts, while unnest (u) and nest (T') are based on the nested rela-
tional algebra. The reduce operator, A, is used in producing the final result of a query/subquery, such
as in aggregations and existential/universal quantifications. For example, the XML universal quantifi-
cation every $v in $x/A satisfies $v/A/data()>5 can be captured by the A operator, with & = A and
head= v/A/data()>5. Like the XQuery predicates, the predicates used in our XML algebraic operators
have implicit existential semantics related to the (potentially multiple) values returned by path expres-
sions. For example, the predicate v/A/data()>5 used in the previous example has the implicit semantics
Jz € v/A/data() : £>5, since the path v/A/data() may return more than one value. Finally, even though
selections and projections can be expressed in terms of A, for convenience, they are treated as separate
operations.

2.2 Translation from XQuery to the XML Algebra

Before XQueries are translated to the XML algebra, paths with wildcard selections, such as e//A, are
instantiated to concrete paths, which may be accomplished, in the absence of type information, with the
help of the Tag Structure. Each XPath expression in an XQuery, which may contain wildcard selections, is
expanded into a concatenation of concrete XPath expressions. For example, the XPath expression /A//X is
expanded to (/A/B/C/X, /A/D/X), if these two concrete paths in the pair are the only valid paths in the
Tag Structure that match the wildcard selection.

Our translation scheme from XQuery to the XML algebra consists of two phases: First, XQueries are
translated into list comprehensions, which are similar to those in Figure 1. Then, the algebraic forms are
derived from the list comprehensions using the definitions in Figure 1.

According to the XQuery semantics [7], the results of nearly all XQuery terms are mapped to sequences
of values. This means that, if an XQuery term returns a value other than a sequence, this value is lifted to a
singleton sequence that contains this value. A notable exception is a boolean value, which is mapped to the
boolean value itself. The following are few rules for 7[e], which maps XQuery terms into algebraic forms.
First, we translate XPath terms into simple paths without path predicates. By adopting the semantics of
XPath, the implicit reference to the current node in a path predicate, such as from the path A/B in the path
predicate X/Y[A/B=1], is captured by the variable $dot, which is bound to the current element. That is,
X/Y[A/B=1] is equivalent to X/Y[$dot/A/B=1]. Under this assumption, path predicates are removed in a

straightforward way:

T8v] = {v}

T[document(“url”)] = {document(“url”)}
T[document(“url”)/path] = {v|d € document(“url”), v € T[$d/path]}
Tleile2]] = {dot|dot € Tle], Tle2] }

Tleli]] = Tlelld]
Tlelitoj]] = Tle]litoj]
Tle/A] = Tle]/A

Tle/@A] = Tle]/QA

To complete our translation scheme, XQuery terms are mapped to the XML algebra:

701 = {}
T[[el, 62]] = Tl[el]]‘H'T[[€2]]
Tl<tag>e</tag>] = {element(“tag”,T[e])}
T[for$vine; whereesreturnes] = {wl|v € Tlei], Tlez], w € Tles] }
Tllet$v := eyreturnes] = Tlez[$v/eq]]
T[some$vine; satisfieses] = V/{T[ezx]|v € Tlei] }

Tler =es] = V/{vi =va|vi € T[e1], v2 € Tlea] }

where the function element takes a tag name and a sequence of XML elements and constructs a new XML
element, and e2[$v/e1] replaces all free occurrences of variable $v in the term e, with the term e;. Note that
boolean predicates, such as the equality in the last rule, are mapped to one boolean value as is implied by
the existential semantics of XQuery predicates [7].

Before the list comprehensions are translated to algebraic forms, the generator domains of the compre-
hensions are normalized into simple path expressions, when possible. This task is straightforward and has
been addressed by earlier work [5, 15]. The following are some examples of normalization rules:

{61|.O.‘.,’U€{€2|.7.},.@.} — {61'.‘3‘.,.7.,06{62}./’?.}
{er] .2, ve{e}, B} = {eiv/es]] .2., P[]}
@o/{e} — e
{e}/A — e/A
{e] .2.}JA — {e/A]| .2}

where .. indicates a sequence of terms separated by commas while #[?/¢2] changes all terms in the sequence £
by replacing all occurrences of v with ea. The first rule applies when the domain of a comprehension generator
is another comprehension and is reduced to a case caught by the second rule. The second rule applies when
the domain of a comprehension generator is a singleton sequence. The last rule distributes a tag selection
to the header of a comprehension. The fourth rule may look counter-intuitive, but is a consequence of the
ambiguous semantics of XQuery where non-sequence values are lifted to singleton sequences. According to
the mapping rules and after normalization, a simple path, such as $v/A/B/C, is mapped to itself, that is,
to v/A/B/C.
For example, the following XQuery:
for $b in document(“http://www.bn.com”)/bib/book
where $b/publisher = “Addison-Wesley" and $b/Q@year >1991
return <book> { $b/title } </book>

is translated to the following comprehension using the above mapping rules:

{w|b € {v]|d € document(“http://www.bn.com”), v € d/bib/book },
(V/{v1 = vy |v; € b/publisher, vy € {“Addison-Wesley”} })
A (V/{vi>v2 |01 € b/Qyear, vy € {1991} }),
w € { element(“book”, b/title) } }

and is normalized into the following comprehension:

{ element(“book”, b/title)

| d € document(“http://www.bn.com”), b € d/bib/book,
V/{v; = “Addison-Wesley” | v; € b/publisher },
V/{v1>1991 | v, € b/Qyear } }

|:> r @ head 3

vars(X), pred

>

Figure 2: Algebraic Query Unnesting

The second phase of our translation scheme maps a normalized term e, which consists of list compre-
hensions exclusively, into the algebraic form C[e] { }, defined by the following rules:

Cl{e|vedoc(“wrl”), .. }]{} = Cl{e|.2.}(p,(doc(*ul”)))
Cl{elv € doc(“wl’), & }JE = C[{e| ..}](ED(p, ([doc(“url”))))
Cl{elv € a/path, 2.} JE = Cl{e]| .2 }](u"*/P™"(E))
C[{ € |pred, < }]] E = C[[{€| ¢ }]] (O—C[[pred]]{}())

Cl{el NE = A™(B)
g _ | ©/CHel 2B
Cle/{el = 1E = { where 69/(A () = A@’e(el)

where doc is a shorthand for document. In addition, since the predicates used in our XML algebraic operators
have existential semantics, similar to the semantics of XQuery predicates, we move the existentially quantified
variables ranged over paths into the predicate iself, making it an implicit existential quantification. This is
achieved by the following rules:

Clv/{e| .@.,ve€path, 2.}] = C[Vv/{e[v/path]| .2., .A.}]
Clv/{el}] = Clel
For example, V/{v; = “Addison-Wesley” | v; € b/publisher } is reduced to b/publisher = “Addison-Wesley”,

which has implicit existential semantics.
Under these rules, the normalized list comprehension derived from our example query is mapped to:

AU’h(O'p2 (Op, (,ub’d/bib/b""k(pd(document(“http://www.bn.com”))))))

where
h = element(“book”,b/title)
p1 = (b/publisher = “Addison-Wesley”)
p2 = b/Qyear>1991

2.3 Algebraic Optimization

There are many algebraic transformation rules that can be used in optimizing the XML algebra. Some of
them have already been used successfully for the relational algebra, such as evaluating selections as early as
possible. We are concentrating here on query unnesting (query decorrelation) because it is very important
for processing streamed data. Without query unnesting, nested queries must be evaluated in a nested-loop
fashion, which requires multiple passes through the stream of the inner query. This is unacceptable because
of the performance requirements of stream processing.

Our unnesting algorithm is shown in Figure 2.A: for each box, ¢, that corresponds to a nested query, it
converts the reduction on top of ¢ into a nest, and the blocking joins/unnests that lay on the input-output
path of the box ¢ into outer-joins/outer-unnests in the box ¢’ (as is shown in the example of Figure 2.B).
At the same time, it embeds the resulting box ¢’ at the point immediately before is used. There is a very
simple explanation why this algorithm is correct: The nested query, ¢, in Figure 2.A, consumes the same

input stream as that of the embedding operation, opr, and computes a value that is used in the component,
f, of the embedding query. If we want to splice this box onto the stream of the embedding query we need
to guarantee two things. First, ¢ should not block the input stream by removing tuples from the stream.
This condition is achieved by converting the blocking joins into outer-joins and the blocking unnests into
outer-unnests (box ¢'). Second, we need to extend the stream with the new value v of ¢ before it is used in f.
This manipulation can be done by converting the reduction on top of ¢ into a nest, since the main difference
between nest and reduce is that, while the reduce returns a value (a reduction of a stream of values), nest
embeds this value to the input stream. At the same time, the nest operator will convert null values to zeros
so that the stream that comes from the output of the spliced box ¢’ will be exactly the same as it was before
the splice.

2.4 A Complete Example

In this subsection, we apply our translation and optimization scheme over the following XQuery (taken
from [7]):

<result>{
for $u in document(“users.xml")//user_tuple
return <user>
{ $u/name }
{ for $b in document(“bids.xml")//bid_tuple[userid = $u/userid]/itemno,
$i in document(“items.xml")//item tuple[itemno = $b]
return <bid>{ $i/description/text() }</bid>
sortby(.) }
</user>
sortby(name) } </result>

which lists all users in alphabetic order by name so that, for each user, it includes descriptions of all the
items (if any) that were bid on by that user, in alphabetic order. Recall that sorting is captured in our
algebra using the monoid sort(f), which sorts a sequence by f. The algebraic form of the above query is:

sort(u/name),h
A t(u/):h1 (uu,da /users/user_tuple(pda (document(“users.xml”))))

where the header h; is the XML construction element(“user” ,u/name-Hhs) and hy contains a nested algebraic

form:
Asort(.) ,element(“bid”,i/description/text())

hy = b /bids /bid_tus (X Dqi/itemno:b Y)

itemn ts i id-t (13 ”
X = 'u’?vbt/.te O.(IU,bi/lfs/erids:/u/usetfde(pdb (document(“bids.xml”))))
Y = Nz,d,-/1tems/1tem_tup1e(pdi (docurnent(“tems.xml”)))

After query unnesting, the resulting decorrelated query is:

Asort (u/name),element(“user” ,u/name-H=z)

Fw,sort(.) ,element(“bid”,i/description/text())

da (X))

where]
= (:/J'b,bt/ltemno (Y)) :in/itemnozb Z
A :qut/userid:u/userid B

u,d, /users/user_tuple (pda (document(“users.xml”)))
’u{n sdb / bids/ Pid-‘cuple(Pa, (document(“bids.xml”)))
'u,z,d,-/1tems/1tem_tup1e(pdi (document(“tems.xml”)))

Il

N o
[

where =P>}] and =4 are left-outer join and outer unnest, respectively.

3 Processing Continuous XML Streams

In our framework, streamed XML data are disseminated to clients in the form:

<stream:xxx hid="..." >XML fragment </stream:xxx>

where xxx is the tag name filler, repeat, replace, or remove. The hole ID, hid, specifies the location of the
fragment in the reconstructed XML tree. Our framework uses the XML algebra for processing XML streams.
The main modification needed to the algebra is related to the evaluation of the simple path expressions used
in predicates and the unnest operator since now they have to be evaluated against the document fillers. More
specifically, function P, given in Section 2, must now be extended to handle holes:

S(<stream:hole hid = “n” />, path) = L

The returned bottom value, L, indicates that the path has not been completely evaluated against the current
XML fragment due to a hole in the fragment. If a L is returned at any point during the path evaluation (as
is defined by P), the XML fragment is suspended. Each client has one central repository of suspended XML
fragments (regardless of the number of input streams), called fragment repository, which can be indexed by
the combination of the stream number and hid (the hid of the stored filler). In addition, each operator has
a local repository that maps hole IDs to filler IDs in the fragment repository. Suppose, for example, that a
filler with hid=m is streamed through an XML algebraic operator and that this operator cannot complete
the evaluation of three paths due to the holes with hid’s h;, ho, and hs. Then, the local repository of the
operator will be extended with three mappings: (hi,m), (he,m), and (hs,m). When later the filler for one
of the holes arrives at the operator, say the filler for hy, then the hole hy inside the filler with hid=m in
the fragment repository is replaced with the newly arrived filler. The hy mapping is removed from the local
repository of the operator and the resulting filler with hid= m at the fragment repository is evaluated again
for this operator, which may result to more hole mappings in the local repository of the operator. Finally, if
there are no blocking holes during path evaluation, that is, when operator paths are completely evaluated,
then the filler is processed by the operator and is removed from the fragment repository. It is not necessary
for all the holes blocking the evaluation of the operator paths to be filled before the fragment is processed
and released. For example, if both paths in the selection predicate v/A/B =3 Av/C/D > 4, are blocked by
holes, then if one of the holes is filled and the corresponding predicate is false, there is no need to wait for
the second hole to be filled since the fragment can be removed from the stream.

If the server sends repeat, replace, or remove fragments, then the client modifies its fragment repository
and may stream some of the fragments through the algebraic operators. If it is a repeat fragment and its
hid is already in the fragment repository, then it is ignored, otherwise it is streamed through the query as
a filler fragment (since the client may have been connected in the middle of the stream broadcast). If it is
a replace fragment and its hid is already in the fragment repository, then the stored fragment is replaced,
otherwise it is streamed through the query as a filler fragment. Finally, if it is a remove fragment, then the
fragment with the referenced hid is removed from the fragment repository (if it exists).

Our evaluation algorithms for the XML algebra are based on in-memory hashing. Blocking operators,
such as join and nest, require buffers for caching stream records. The evaluation algorithms for these
operators are hash-based, when possible (it is not possible for non-equijoins). For example, for the join
XX, /4/B=y/c/D/EY ; We will have two hash tables in memory with the same number of buckets, one for
stream X with a hash function based on the path z/A/B and one for the stream Y based on the path
y/C/D/E. When both streams are completed, the join is evaluated by joining the associated buckets in
pairs. The nest operator can be evaluated using a hash-based algorithm also, where the hash key is the
combination of all group-by paths.

As we have mentioned, to cope with continuous streams and with streams larger than the available
memory, we make use of punctuations sent by the server along with the data. In our framework, when
punctuations are received at the client site, they are stored at a central repository, called punctuation
repository, and are indexed by their stream number. Each blocking operation, such as join or nesting, is
associated with one (for unary) or two (for binary) pairs of stream numbers/hash keys. The hash key is a
path that can be identified by a Tag Structure ID. The blocking operators are evaluated continuously by
reading fragments from their input streams without producing any output but by filling their hash tables.
As soon as one of their hash tables is full, they consult the punctuation repository to find all punctuations
that match both their stream number and Tag Structure ID. Then they perform the blocking operation over
those hashed fragments that match the retrieved punctuations, which may result to the production of some
output. The last phase, flushing the hash tables, can be performed in a pipeline fashion, that is, one output
fragment at a time (when is requested by the parent operation). The punctuation repository is cleared from
all the punctuation of a stream when the entire stream is repeated (i.e., when the root fragment is repeated).

10

Sorting is a special case and is handled separately. It is implemented with an in-memory sorting, such
as quicksort. Each sort operator remembers the largest key value of all data already flushed from memory.
In the beginning, of course, the largest key is null. Like the other blocking operators, when the buffer used
for sorting is full, the punctuation repository is consulted to find punctuations related to the sorting key. If
there is a punctuation that indicates that we have seen all data between the largest key value (if not null)
and some other key value, then all buffered data smaller or equal to the latter key value are flushed and this
key value becomes the new largest key.

4 Future Plans

When we described our XML algebra, we assumed that all the XPath paths used in operator predicates
and by the unnest operators (as unnesting paths) are fully mapped to concrete paths that do not contain
any wildcard selections. This is possible if the XML Tag Structure is provided, as is done when a server
disseminates XML data to clients in our stream processing framework. In the absence of such information,
wildcard selections of the form e//A, can be evaluated with a transitive closure operator that walks through
the XML tree e to find all branches with tag A. Transitive closures are very hard to optimize and very few
general techniques have been proposed in the literature, such as magic sets [25]. To address this problem,
we are planning to incorporate structural recursion over tree types to our XML algebra. Our starting point
will be our previous work on structural recursion over tree-like data structures [13], which satisfies very
effective optimization rules, reminiscent to loop fusion and deforestation (elimination of intermediate data
structures) used in functional programming languages. These operators and optimization techniques can
also be used for optimizing queries over fixed-point types, supported directly in DTDs and XML Schemas,
such as the part-subpart hierarchy. XQuery does not provide any special language construct for traversing
such structures, but can simulate such operations with unrestricted recursion. We are planning to introduce
language extensions to XQuery to handle structural recursion directly and a mapping from these extensions
to the structural recursion algebraic operators. In addition, we are planning to define an update language
for XQuery, give it a formal semantics, and optimize it.

Related to query processing of XML streams, we have only presented evaluation algorithms based on
in-memory hashing. We are planning to investigate more evaluation algorithms for our XML algebraic
operators. An alternative approach to hashing is sorting. For example, an alternative way of implementing
a group-by operation is to sort the input by the group-by attributes and then aggregate over consecutive
tuples in the sorted result that belong to the same group [19]. Sorting is a blocking operation, which requires
the availability of the entire stream before it produces any output. It can be turned into a non-blocking
operator if punctuations related to the sorting attributes are transmitted from the server. Supporting
multiple evaluation algorithms for each algebraic operator poses new challenges. How can a good evaluation
plan be selected at the client side? Most relational database systems use a cost-based, dynamic programming
plan selection algorithm, and rely heavily on data statistics for cost estimation [27]. If the server sends a
sorted data stream, then this may indicate that a sort-based algorithm that requires the same order may
be faster and may require less memory than a hash-based one. This is very valuable information to the
client query optimizer and should be transmitted as another stream annotation by the server, maybe as
frequently as the document Tag Structure itself. Another useful information needed by the client and must
be transmitted by the server is statistics about the streamed data. It is still an open problem what form these
statistics should take and how they should be used by the client. One possibility is to annotate each node
in the document Tag Structure with the total number of XML elements in the document that correspond to
that node. Hence, we are planning to investigate cost-based plan selection for streamed data.

11

5 Conclusion

We have presented a framework for processing streamed XML data based on an XML algebra and an
algebraic optimization framework. The effectiveness of our framework depends not only on the available
resources at the client site, especially buffer size, and on the ability of the client to optimize and evaluate
queries effectively, but also on the willingness and the ability of servers to broadcast useful punctuations
through the data stream to help clients utilize their resources better. The server must be aware of all possible
anticipated client queries and disseminate punctuations that reduce the maximum and average sizes of client
resources. In addition, the server can disseminate the fragmentation/repetition policy used in splitting its
XML data as well as statistics about the data sent between punctuations before streaming the actual data.
This information may help clients to allocate their limited memory to various query operations more wisely.
We are planning to address these issues in future work.

Acknowledgments: This work is supported in part by the National Science Foundation under the grant
115-9811525 and by the Texas Higher Education Advanced Research Program grant 003656-0043-1999.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast Disks: Data Management for Asymmetric
Communications Environments. In ACM SIGMOD International Conference on Management of Data,
San Jose, California, pages 199-210, May 1995.

[2] S. Babu and J. Widom. Continuous Queries Over Data Streams. SIGMOD Record, 30(3):109-120,
September 2001.

[3] C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured Data and XML. In ACM SIGMOD
Workshop on The Web and Databases (WebDB’99), Philadelphia, Pennsylvania, pages 37-42, June
1999.

[4] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and Optimization Tech-
niques for Unstructured Data. In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, pages 505-516, May 1996.

[5] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension Syntax. SIGMOD Record,
23(1):87-96, March 1994.

[6] R. Cattell, editor. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[7] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery: A Query Language for
XML. W3C Working Draft. Available at http://www.w3.org/TR/xquery/, 2000.

[8] V. Christophides, S. Cluet, and J. Siméon. On Wrapping Query Languages and Efficient XML Inte-
gration. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
Dallas, Texas, pages 141-152, May 2000.

[9] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner. Optimizing Queries with Universal Quantifica-
tion in Object-Oriented and Object-Relational Databases. In Proceedings of the 25th VLDB Conference,
Athens, Greece, pages 286—295, September 1997.

[10] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your Mediators Need Data Conversion! In ACM
SIGMOD International Conference on Management of Data, Seattle, Washington, pages 177-188, June
1998.

[11] S. Cluet and G. Moerkotte. Efficient Evaluation of Aggregates on Bulk Types. Technical report, Aachen
University of Technology, October 1995. Technical Report 95-05.

[12] S. Cluet and G. Moerkotte. Nested Queries in Object Bases. In Fifth International Workshop on
Database Programming Languages, Gubbio, Italy, page 8, September 1995.

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

L. Fegaras. Efficient Optimization of Iterative Queries. In Fourth International Workshop on Database
Programming Languages, Manhattan, New York City, pages 200-225. Springer-Verlag, Workshops on
Computing, August 1993.

L. Fegaras and R. Elmasri. Query Engines for Web-Accessible XML Data. In Very Large Data Bases
(VLDB) Conference, Roma, Italy, pages 251-260, 2001.

L. Fegaras and D. Maier. Optimizing Object Queries Using an Effective Calculus. ACM Transactions
on Database Systems, 25(4):457-516, December 2000.

M. Fernandez, J. Simeon, and P. Wadler. An Algebra for XML Query. In FST TCS, Delhi, December
2000.

D. Florescu, A. Levy, and A. Mendelzon. Database Techniques for the World-Wide Web: A Survey.
SIGMOD Record, 27(3):59-74, 1998.

R. Ganski and H. Wong. Optimization of Nested SQL Queries Revisited. In Proceedings of the ACM-
SIGMOD International Conference on Management of Data, San Francisco, California, pages 23-33,
May 1987.

G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys, 25(2):73-170,
1993.

J. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman, T. Roth, and P. Haas. Interactive
Data Analysis: The Control Project. IEEE Computer, 32(8):51-59, August 1999.

J. Hellerstein, P. Haas, and H. Wang. Online Aggregation. In Proceedings ACM SIGMOD International
Conference on Management of Data, Tucson, Arizona, pages 171-182, May 1997.

Z. Ives, A. Levy, and D. Weld. Efficient Evaluation of Regular Path Expressions on Streaming XML
Data. Technical report, University of Washington, 2000. Technical Report UW-CSE-2000-05-02.

W. Kim. On Optimizing an SQL-like Nested Query. ACM Transactions on Database Systems, 7(3):443—
469, September 1982.

J. Martinez. Overview of the MPEG-7 Standard (version 5.0). Technical report, Singapore, March 2001.
ISO/IEC JTC1/SC29/WG11 N4031. Available at http://mpeg.telecomitalialab.com/standards/mpeg-
7/mpeg-7.htm.

I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is Relevant. In Proceedings of
the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, pages
247-258, May 1990.

M. Muralikrishna. Improved Unnesting Algorithms for Join Aggregate SQL Queries. In Proc. Int’l.
Conf. on Very Large Data Bases, pages 91-102, Vancouver, BC, Canada, August 1992.

P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a Relational
Database Management System. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data, Boston, Massachusetts, pages 23-34, May 1979.

H. Steenhagen, P. Apers, and H. Blanken. Optimization of Nested Queries in a Complex Object Model.
In M. Jarke, J. Bubenko, and K. Jeffery, editors, Advances in Database Technology — EDBT ’9/, pages
337-350. Springer-Verlag, 1994. LNCS 779.

P. Tucker, D. Maier, T. Sheard, and L. Fegaras. Punctuating Continuous Data Streams. Submitted to
PODS’02, 2001.

A. Wilschut and P. Apers. Dataflow Query Execution in a Parallel Main-Memory Environment. In Pro-
ceedings of the First International Conference on Parallel and Distributed Information Systems (PDIS
1991), Miami Beach, Florida, pages 68-77, December 1991.

World Wide Web Consortium (W3C). Extensible Markup Language (XML). http://www.w3.org/XML/.

13

