Multidimensional Search Structures
Spatial Databases

• Spatial Objects
 – *Points*: location (x,y)
 – *Lines*: pairs of points (roads, coastal lines)
 – *Polygons*: list of points (states, countries)

• Data Types
 – *Point*: a data type with no extension (area)
 – *Region*: has location and boundary that defines the extension

• Spatial Queries
 – *Range queries*
 • “Find all Italian restaurants within 20 miles from UTA”
 – *Nearest neighbor queries*
 • “Find the 10 Italian restaurants that are nearest to UTA”
 • “Find the nearest fire station to Neddermann Hall”
 – *Spatial join queries*
 • “Find pairs of cities within 20 miles of each other”
 • “Find restaurants that are adjacent to university campuses”
Applications

• Geographical Information Systems (GIS)
 – Map systems
 – Resource management systems

• Computer-aided design and manufacturing (CAD/CAM)
 – VLSI design (avoiding overlaps, routing wires)

• Multimedia databases
 – Various dimensions (color, shape, texture)
Representation of Spatial Objects

- It is very expensive to work on real boundary lines
- *Minimum Bounding Rectangle* (MBR)

Testing for intersection:

- Test if MBRs intersect
- If they do, test if boundary lines intersect
Grid-Tree (G-Tree)

- Mainly for point data of any dimension
- Based on hypercubes
G-Tree Organization

- Rotate vertical/horizontal split
- When split, add 0/1 at the end

- G-Trees are organized in B⁺-trees
 - Key is the binary string
Searching G-Trees

• Search: find point \(P = (x_1, x_2, \ldots, x_n) \)
 – Let \(m \) be the number of bits of the largest bitstring
 – Find the \(m \)-bit region that contains \(P \):
 • Start with \(s_i = 0 \) and \(t_i = 1 \) for all \(1 \leq i \leq n \)
 • For \(k = 0 \) to \(m-1 \):
 Slice over \(j = (k \mod n) + 1 \) dimension
 The \(k \)th bit of the bitstring is 0 iff \(x_j < (s_j + t_j)/2 \); then set \(t_j = (s_j + t_j)/2 \)
 Otherwise, it is 1 and set \(s_j = (s_j + t_j)/2 \)
 • For \(n = 2 \), \(m = 5 \), and \(P = (0, 1, 0.7) \):
 0.1 < ½ bit0 is 0
 0.7 > ½ bit1 is 1
 0.1 < ¼ bit2 is 0
 0.7 < ½+¼ bit3 is 0
 0.1 < 1/8 bit4 is 0
 Bitstring is 00010
 – Use the bitstring as the key for the G-Tree
Point Quadtrees

- Divide the space into four quadrants
- Represented as an unbalanced tree where each node has 4 children
 - Internal node: point
 - Leaf: empty
- Node: \((x, y, \text{NE}, \text{NW}, \text{SW}, \text{SE})\)
Spatial Operations on Quadtrees

- Search for a point \(P=(x,y) \)
 - if current node \(T \) in quadtree is leaf, then not found
 - if \(T=P \), then found
 - else find quadrant of \(T \) that includes \(P \) and search recursively:
 - e.g., if \(x>T.X \) and \(y>T.Y \) then search SE quadrant
- Given a rectangle \((x_1,y_1,x_2,y_2)\) find all points in the rectangle
 - Need to keep a set of points
 - The rectangle may intersect more than one quadrants
- Insert a point \(P=(x,y) \)
 - If current node is leaf, then replace leaf with \((x,y,nil,nil,nil,nil)\)
 - Else determine the quadrant and apply the algorithm recursively
R*-Trees

- It is like a B⁺-tree with key the MBR, but
 - There is no order in the rectangles in each node
 - Sibling rectangles may overlap

- Restrictions on R*-tree nodes:
 - The root has at least two children (unless it is the only node)
 - Every non-root node has \(m \) children where \(M/4 \leq m \leq M \)
 - The tree is balanced
Spatial Operations on R*-Trees

Find all objects that intersect rectangle 9:

Insert rectangle 9:
Insert a New Object Rectangle S

- At each node (starting from root) choose only one bounding rectangle R to insert the rectangle S so that the insertion of S into R has the least *overlap enlargement*.

 (Overlap enlargement of a rectangle is the total overlapping area of the rectangle with the other rectangles in the tree.)

- If there are many with the same overlap enlargement, choose the one with the smallest area.

- If overflow, split the node into two sets of nodes using a split axis so that there is no underflow and the perimeters of the two bounding boxes are minimized.