1 Overview

The λ-DB project at the University of Texas at Arlington aims at developing frameworks and prototype systems that address the new query optimization challenges for object-oriented and object-relational databases, such as query nesting, multiple collection types, methods, and arbitrary nesting of collections. We have already developed a theoretical framework for query optimization based on an effective calculus, called the monoid comprehension calculus [4]. The system reported here is a fully operational ODMG 2.0 [2] OODB management system, based on this framework. Our system can handle most ODL declarations and can process most OQL query forms. λ-DB is not ODMG compliant. Instead it supports its own C++ binding that provides a seamless integration between OQL and C++ with low impedance mismatch. It allows C++ variables to be used in queries and results of queries to be passed back to C++ programs. Programs expressed in our C++ binding are compiled by a preprocessor that performs query optimization at compile time, rather than run-time, as it is proposed by ODMG. In addition to compiled queries, λ-DB provides an interpreter that evaluates ad-hoc OQL queries at run-time.

The λ-DB system architecture is shown in Figure 1. The λ-DB evaluation engine is written in SDL (the SHORE Data Language) of the SHORE object management system [1], developed at the University of Wiscon-

sin. ODL schemas are translated into SDL schemas in a straightforward way and are stored in the system catalog. The λ-DB OQL compiler is a C++ preprocessor that accepts a language called λ-OQL, which is C++ code with embedded DML commands to perform transactions, queries, updates, etc. The preprocessor translates λ-OQL programs into C++ code that contains calls to the λ-DB evaluation engine. We also provide a visual query formulation interface, called VOODOO, and a translator from visual queries to OQL text, which can be sent to the λ-DB OQL interpreter for evaluation.

Even though a lot of effort has been made to make the implementation of our system simple enough for other database researchers to use and extend, our system is quite sophisticated since it employs current state-of-the-art query optimization technologies as well as new advanced experimental optimization techniques which we have developed through the years, such as query unnesting [3]. The λ-DB OODBMS is available as an open source software through the web at http://lambda.uta.edu/lambda-DB.html.

2 Query Optimization in λ-DB

Our OQL optimizer is expressed in a very powerful optimizer specification language, called OPTL, and is implemented in a flexible optimization framework, called OPTGEN, which extends our earlier work on optimizer generators. OPTL is a language for specifying query optimizers that captures a large portion of the optimizer specification information in a declarative manner. It extends C++ with a number of term manipulation constructs and with a rule language for specifying query transformations. OPTGEN is a C++ preprocessor that maps OPTL specification into C++ code.

The λ-DB OQL optimizer proceeds in eight phases: 1) parsing of OQL queries and translation from OQL into calculus, 2) type checking, 3) normalization, 4) translation into algebra and query unnesting, 5) join permutation, 6) physical plan generation, 7) generation of intermediate evaluation code, and 8) translation from

---

*This work is supported in part by the National Science Foundation under grant IIS-981325
*
[1] The University of Texas at Arlington, CSE, 416 Yates Street, P.O. Box 19015, Arlington, TX 76019-19015
*
[2] Oregon Graduate Institute of Science & Technology, CSE, 20000 N.W. Walker Road P.O. Box 91000, Portland, OR 97290-1000

intermediate code into C++ code, or interpretation of
the intermediate code.

Our calculus is called the monoid comprehension
 calculus [4]. It captures most features of OQL and
 is a good basis for expressing various optimization
 algorithms concisely. It is based on monoids, a general
 template for a data type, which can capture most
 collection and aggregate operators currently in use for
 relational and object-oriented databases.

One important component of our optimizer is a nor-
 malization system for reducing expressions to a canoni-
 cal form. Normalization simplifies the subsequent op-
 timization phases because it reduces the number of form-
 ulars to be considered each time. In addition, normali-
 zation removes many forms of query nesting, a pro-
 cess also known as query decorrelation. All the other
 forms of query nesting are removed by a very power-
 ful method [3], which generalizes many unnesting tech-
 niques proposed recently in the literature. In fact, our
 system is capable of removing any form of query nesting
 using a very simple and efficient algorithm. The simplic-
 ity of our method is due to the use of the monoid com-
 prehension calculus as an intermediate form for OODB
 queries. The monoid comprehension calculus treats op-
 erations over multiple collection types, aggregates, and
 quantifiers in a similar way, resulting in a uniform way
 of unnesting queries, regardless of their type of nesting.
 Our unnesting algorithm is compositional, that is, the
 translation of an embedded query does not depend on
 the context in which it is embedded; instead, each sub-
 query is translated independently, and all translations
 are composed to form the final unnested query. Our
 unnesting algorithm is efficient and easy to implemen-
 (it is only 160 lines of C++ code). In addition to query
 unnesting, \( \lambda \)-DB converts path expressions into pointer
 joins between class extents (when is possible) and it us-
 es information about 1:N class relationships to convert
 unnests into pointer joins between extents (by using the
 inverse relationship).

If the comprehension calculus was to be interpreted
 as is, the evaluation would proceed in a nested-loop
 fashion, resembling the semantics of the calculus, which
 gives an unacceptable performance for most non-trivial
 applications. Research in relational query optimization
 has already addressed the related problem of efficiently
 evaluating join queries by considering different join
 orders, different access paths to data, and different
 join algorithms. To effectively adapt this technology to
 handle our calculus, comprehensions must be expressed
 in terms of algebraic operators, which, eventually,
 will be mapped into physical execution algorithms,
 like those found in relational database systems. This
 translation is done in stages: queries in our framework
 are first translated into monoid comprehensions, which
 serve as an intermediate form, and then are translated
 into a version of the nested relational algebra that
 supports aggregation, quantification, outer-joins, and
 outer-unnests. At the end, the algebraic terms are
 translated into execution plans. We use both a cal-
 culus and an algebra as intermediate forms because the
 calculus closely resembles current OODB languages
 and is easy to normalize, while the algebra is lower-level
 and can be directly translated into the execution algorithms
 supported by DBMSs.

A very important task of any query optimizer is
 finding a good order to evaluate the query operations.
 In the context of relational databases, this is known as
 join ordering. \( \lambda \)-DB uses a polynomial-time heuristic
 algorithm, called G00, that generates a “good quality”
 order of the monoid algebra operators in the query
algebraic form. GOO is a bottom-up greedy algorithm that always performs the most profitable operations first. The measure of profit is the size of the intermediate results, but it can be easily modified to use real cost functions. GOO is based on query graphs and takes into account both the output sizes of the results constructed in earlier steps and the predicate selectivities. It generates bushy join trees that have a very low total size of intermediate results.

After the best evaluation order of operators is derived, the algebraic form is mapped into an evaluation plan by a rule-based rewriting system. Our system considers the available access paths (indexes) and the available physical algorithms to generate different plans. During this phase, all alternative plans (for the derived order of operators) are generated and costed and the best plan is selected. Finally, each evaluation plan is translated into an intermediate evaluation code that reflects the signatures of the evaluation algorithms used in \( \lambda \)-DB (described in the next section). This code can then be straightforwardly translated into C++ or interpreted by the \( \lambda \)-DB interpreter.

3 The Evaluation Engine

The \( \lambda \)-DB evaluation engine is built on top of SHORE [1]. The only layer of SHORE used in our implementation is SDL (the Shore Data Language) exclusively, because we believe it is more resilient to changes than the Shore Storage Manager and is easier to use. An alternative would have been to write our own value-added server on top of the storage manager. A lot of effort has been made to make the implementation of the evaluation engine as simple as possible without sacrificing performance. This required a very careful design. For example, one of our design requirements was to put all the evaluation algorithms in a library so that the query evaluation code would consist of calls to these algorithms. This sounds obvious enough and simple to implement, but it required some special techniques (described below) borrowed from the area of functional programming.

Algebraic operators, such as \( R \bowtie_{R.A=S.B} S \), are intrinsically higher-order. That is, they are parameterized by pieces of code (i.e., functions) that specify some of the operation details. For the previous join, the piece of code is the predicate \( R.A = S.B \). If it was to be implemented in C++, the join operator could have been specified as

\[
\text{Relation join ( Relation x, Relation y,}
\quad \text{bool (pred) (tuple,tuple) )}
\]

where \( \text{pred} \) is the address of the predicate function. The same holds for any evaluation plan operator, such as the nested-loop join operator. If a query is to be compiled into execution code with no run-time interpretation of predicates, it should make use of higher-order evaluation algorithms. The alternative (which is adopted by commercial systems) is to define the evaluation algorithms as kind of macros to be macroexpanded and individually tailored for each instance of the evaluation operator in the query plan. For example, the nested-loop join would have to be a function with a 'hole' in its body, to be filled with the predicate code. Then the entire code, the evaluation function and the predicate, is generated and inserted inside the query code. This is very clumsy and makes the development and extension of the evaluation algorithms very tedious and error-prone.

One very important issue to consider when writing evaluation algorithms is stream-based processing of data (sometimes called iterator-based processing or pipelining). We would like to avoid materializing the intermediate data on disk whenever it is possible. \( \lambda \)-DB pipelines all evaluation algorithms. Instead of using threads to implement pipelining, as it is traditionally done in most systems, we developed a special technique borrowed from the area of lazy functional languages. Each of our evaluation algorithms is written in such a way that it returns a piece of data (one tuple) as soon as it constructs one. To retrieve all the tuples, the algorithm must be called multiple times. For example, the pipeline version of the nested-loop join will have the signature

\[
\text{tuple nested_loop ( Stream sx, Stream sy,}
\quad \text{bool (pred) (tuple,tuple) )}
\]

where \( \text{Stream} \) is a stream of tuples equipped with standard operations, such as \( \text{first} \) and \( \text{next} \). In contrast to the regular nested-loop algorithm, this algorithm exits when it finds the first qualified tuple (that satisfies \( \text{pred} \)). To pipeline an algorithm, we construct a suspended stream, which is a structure with just one component: an embedded function, which, when invoked, it calls the evaluation algorithm to construct one tuple. For example, to pipeline our nested-loop algorithm, we construct a suspended stream whose embedded function, \( F \), is defined as

\[
\text{tuple F O \{ return nested_loop(s1,s2,pred); \},}
\]

where \( s1 \) and \( s2 \) are the streams that correspond to the join inputs and \( \text{pred} \) is the address of the predicate function. When a tuple is needed from a suspended stream, its embedded function is called with no arguments to return the next tuple. This is a clean and efficient way of implementing pipelining. This type of evaluation resembles lazy evaluation in functional programming languages. Here though we provide an explicit control over the lazy execution, which gives a better handle of controlling the data materialization on disk.
Currently, the λ-DB evaluation engine supports table scan of a class extent, index scan, sorting, nested-loop join, indexed nested-loop join, sort-merge join, pointer join, unnesting, nesting (group-by), and reduction (to evaluate aggregation and quantifications). We are planning to support block nested-loop join and hybrid hash join in the near future.

The intermediate evaluation code, which is generated from a query evaluation plan, is a purely functional program that consists of calls to the evaluation algorithms. The functional parameters of the calls (such as the predicate function of the nested-loop join), are represented as anonymous functions (lambda abstractions). If the intermediate code is compiled into C++, the lambda abstractions are translated into named C++ functions by a simple defunctionalization process. If the intermediate code is interpreted, each call to an evaluation algorithm is executed without much overhead because function addresses are stored into a vector and calls to functions are dispatched in constant time by retrieving the function directly from the vector. Lambda abstractions are interpreted by using the address of the interpreter itself as a parameter and by pushing the body of the lambda abstraction into a special stack. This form of dispatching makes the interpreter very compact (it is 400 lines of C++ code only) and very fast.

4 Highlights of the Demo

In our SIGMOD 2000 demo we will present the latest version of λ-DB. We will use a sample database that is simple enough for the audience to understand in a few minutes but challenging enough to express some interesting queries for showing the basic features of our system. For a short demo, the audience will have the chance to submit a number of ad-hoc OQL queries either in text form or using our visual query formulator, VOODOO. For those in the audience interested in query processing and optimization, we will provide a visual interface to display the most important phases and results during the optimization of a query.

References