
A Fully Pipelined XQuery Processor

Leonidas Fegaras Ranjan Dash YingHui Wang

University of Texas at Arlington, Arlington, TX 76019-19015
fegaras@cse.uta.edu

ABSTRACT
We present a high-performance, pull-based streaming pro-
cessor for XQuery, called XQPull, that can handle many
essential features of the language, including general predi-
cates, recursive queries, backward axis steps, and function
calls, using a very small amount of caching. Our framework
is based on a new type of event streams, called retarded
streams, which allow multiple and nested streams to be in-
terleaved in the same physical stream, while postponing the
caching of input events until is absolutely necessary, typ-
ically at the end of the query evaluation, just before the
results are ready to print.

1. INTRODUCTION
We present a high-performance, pull-based streaming pro-

cessor for XQuery, called XQPull, that can handle many
essential features of the language using a small amount of
caching and having a high throughput rate and a fast la-
tency. While other streaming approaches cache events ea-
gerly to preserve the semantics of query operations, our sys-
tem postpones caching until is absolutely necessary, typi-
cally at the end of the query evaluation, just before the
results are ready to print. This is accomplished with a
novel design of event streams that include events to spec-
ify the parts of the computation that need to be postponed.
By postponing computations over initially large stream seg-
ments that require caching, we anticipate a later reduction
of these segments by subsequent operations, thus reducing
the final cache size. The postponed computations are prop-
agated through the pipeline stages so that, after the final
stream unfolding, the result is equal to that we would have
gotten if we had applied the caching eagerly.

Our framework is based on the following assumptions:

• We assume that data streams are very large or even
unbounded and that the nesting depth of elements is
considerably smaller than the stream size. Note that,
even if the entire stream can fit in memory, it would
be undesirable to do so since it would result to high

latency and low throughput.

• We aim at a framework that is effective for casual
ad-hoc queries that produce output far smaller than
the input stream. Our goal is to build a system that,
for most queries, requires a memory footprint propor-
tional to the size of the query output, rather than the
query input.

• Many inefficiencies, such as some forms of backward
steps, can be removed by well-known optimizations
techniques. These methods can be even more effec-
tive by exploiting type information. Since XQuery
is Turing complete, though, these optimizations are
not complete and cannot remove all forms of ineffi-
ciency. Our framework is focused on query processing
on schema-less data only, which is done after all nec-
essary optimizations have been applied.

The contributions of our work are summarized as follows:

• We introduce a new type of event streams, called re-

tarded streams, and a new framework for pull-based
stream processing based on these streams. A retarded
stream allows multiple and nested streams to be in-
terleaved in the same physical stream, and postpones
the caching of input events to the last stage of query
evaluation.

• Each of our pipeline components uses, in the worst
case, a buffer space (ie, a state) proportional to the
nesting depth of the input XML stream, but not pro-
portional to the stream size. The only possible excep-
tions are: the final unfolding of the retarded stream,
the blocking operations (sequence concatenation, a join
of two documents, set operators, and sorting), and
some general existential comparisons (such as =).

• The construction of the pipeline from a query is com-
positional and syntax-driven. That is, each XQuery
syntactic structure, such as a single XPath step, is
mapped to a simple module, called an iterator, while
a given XQuery is mapped to a pipeline by compos-
ing these iterators in the same way the corresponding
XQuery syntactic structures are composed to form the
query. Compositional translations result to concise,
clean, and extensible implementations but require a
careful design to avoid caching intermediate results.

• In contrast to related work, general predicates, recur-
sive queries (such as //∗), backward axis steps, and

e e2
1 P

A

e1 e2

B
PClone

0

1

0

1

Figure 1: The push-based (A) and pull-based (B) pipelines
for e1[e2] (P is the predicate tester)

calls to user-defined functions are fully streamlined,
requiring a small memory footprint.

Although our goals are similar to those of BEA [5], the con-
tribution of our work is in the design of the retarded streams,
which allows to postpone the parts of processing that require
caching to the final stages of evaluation.

An alternative to pull-based, is push-based stream pro-
cessing [3]. In push-based processing, the unit of a query
pipeline is an event handler, which provides methods for
handling the various event types. Each handler serves as
both a consumer and a producer of events. As a producer, it
pushes an event to the next handler in the pipeline (the con-
sumer), by calling the appropriate consumer method (rather
than pushing an object to be dispatched by the consumer).
The consumer, in turn, becomes a producer and pushes
events to the next handler in the pipeline, etc, until the
last handler, the query printer, prints the results. Having
experimented with both pull- and push-based XQuery pro-
cessing [4, 3], we now believe that there are some tasks that
are easier to do with a pull-based processor while some oth-
ers are easier with a push-based one. For instance, a handler
in a push-based pipeline can easily push the same informa-
tion to multiple consumers (basically, for each event, it calls
the handlers of all these consumers). This task is very im-
portant when implementing predicates, such as e1[e2], using
a compositional approach: After we construct the pipelines
for e1 and e2, we must find a way to connect them to feed
the predicate handler, P (Figure 1.A). This can be done by
pushing the output of e1 to both the input handler of the
pipeline e2 and the handler P , so that P can propagate or
discard elements based on the output of e2. Alternatively,
in our pull-based framework, we had to use a special iter-
ator, Clone, to duplicate each event in the stream so that
the original event is propagated through the e2 pipeline as
is, while the replica is processed by the e2 pipeline (Fig-
ure 1.B). While splitting streams is easier in a push-based
framework, merging or joining streams is easier in a pull-
based one. For example, to join two push-based streams
one has to use a symmetric join, while there are numerous
methods to join two pull-based streams. This is the main
reason why push-based query processing is rarely used in
database query processing.

There is an increased interest on using finite state ma-
chines and transducers, augmented with buffers, to process
XPath queries as well as general XQueries in a stream-like
fashion [2, 10, 8, 7, 12, 9]. These approaches do an excel-
lent job on the stream processing of simple XPath queries,
but their extensions to handle predicates [8, 12] and com-
plex XQueries [10] turned out to be cumbersome. While
the space requirements of these approaches are, in princi-

ple, identical to those based on pull-based iterators or push-
based event handlers, potentially, they can execute a lit-
tle bit faster because they do not impose the overhead of
method calls intrinsic to all compositional approaches. That
is, while in these approaches a single stream event causes
a state transition, which can be handled by a simple ta-
ble lookup, in the compositional approaches, the number of
method calls to handle an event is, in the worst case, propor-
tional to the size of the pipeline. Nevertheless, by adding an
acceptable amount of method call overhead, compositional
approaches offer more expressive power and simplicity than
holistic approaches, such those based on automata.

Finally, our retarded streams are somewhat related to lazy
streams in lazy functional programming languages. That is,
one can implement the query processing modules as func-
tions from lists to lists and compose a query pipeline out
of these functions. While in strict evaluation each module
would construct an intermediate list to be discarded after
it has been passed to the next module, in lazy evaluation,
each module would implicitly process the list events through
the pipeline one-event-at-a-time, without constructing the
complete intermediate lists. This is how I/O streams and
infinite lists are implemented in lazy functional program-
ming languages. Alternatively, one may use program opti-
mization techniques, such as loop fusion and partial evalua-
tion, to fuse the list-to-list functions that form a given query
pipeline to completely remove the construction of interme-
diate lists. Although it may have been easier to implement
our system using list-to-list functions, we decided to imple-
ment our pipelines using iterators in a strict language (Java)
for a finner control of laziness.

2. RETARDED STREAMS
Our retarded streams include events that correspond to

those generated by the XMLPull pull-based parser [13]:

StartStream (stream) // beginning of stream
EndStream(stream) // end of stream
StartTag (stream , l e v e l , tag , a t t r i b u t e s)
EndTag(stream , l e v e l , tag)
CData(stream , l e v e l , t ext) // content t e x t

but they also include an event for separating tuples gener-
ated by FLWOR loops:

EndTuple (stream , l e v e l) // tup l e separator

They may also include events that are generated by our iter-
ators to specify that certain postprocessing is needed to gen-
erate the correct output stream, called unfolding the stream:

Suspend (stream , l e v e l) // suspend the r e s t events
Release (stream , l e v e l) // re l ea se suspended events
Discard (stream , l e v e l) // discard suspended events
Error (stream , l e v e l , msg)// retarded error message

This section gives the semantics of these events. All events
are associated with a stream number (since we allow multi-
ple interleaved streams in the same retarded stream) while
most events use a stream level number, explained in detail
below. Briefly, if the event level is greater than zero, it indi-
cates that this event was supposed to be cached, but instead,
it was streamed immediately (ie, prematurely), with the
plan to be placed at the correct position in the stream dur-
ing the final stream unfolding using (hopefully less) caching.
This kind of events are generated by our iterators for recur-
sive steps, such as //*, without using any caching locally.

We use the notation Xs

l , Y s

l , etc, to denote single events
associated with the stream number s and the optional level l.
We also use the letters α, β, etc, to denote retarded streams,
which are represented as sequences of events separated by
semicolon, and ∅ to denote the empty stream.

The nesting depth associated with a stream number s and
a level l of a stream α is nests

l (α), defined as follows:

nests

l (∅) = 0
nests

l (StartTags

l
; α) = nests

l (α) + 1
nests

l (EndTags

l
; α) = nests

l (α) − 1

nests

l (X
s
′

l′
; α) = nests

l (α) otherwise

which looks only at the events with level l and ignores the
rest. We define a top element with stream number s and level
l to be either an event CDatas

l in the stream α; CDatas

l ; γ,
such that nests

l (α) = 0, or the substream StartTags

l
; β; EndTags

l

of the stream α; StartTags

l
; β; EndTags

l
; γ, such that nests

l (α) =
0, nests

l (β) = 0, and for each prefix δ of β: nests

l (δ) 6= 0.
For example, the stream

StartStream (0) ; StartTag (0 ,0 ,A , []) ; CData (0 ,0 , ”x”) ;
EndTag (0 ,0 ,A) ; CData (0 ,0 , ”y”) ; StartTag (0 ,0 ,B , []) ;

CData (0 ,0 , ”z”) ; EndTag (0 ,0 ,B) ; EndStream (0) ;

has three top elements, which correspond to the XML frag-
ments <A>x, y, and z.

The Suspend/Release/Discard events are generated dur-
ing the evaluation of predicates to cope with the situation
in which the outcome of a predicate is determined after the
events that constitute the conditional output have been re-
ceived. One example is the query /a[b/c]/d, where the
events of the d elements inside an a element arrive before
the events of the c elements. For each Suspend event, there
is a single matching Release or Discard event (in the same
way StartTag/EndTag events are paired). Pairs of Suspend
and their matching Release/Discard events can be nested to
cope with nested predicates. The removal of these events is
done at the final unfolding step in the following way:

α; Suspends

l
; β; Releases

l ; γ → α; β; γ
α; Suspends

l
; β; Discards

l ; γ

→ α; [Xs
′

l′
| Xs

′

l′
∈ β, s′ 6= s ∨ l′ 6= l]; γ

That is, all the events with stream number s and level l
are suspended until a matching Release or Discard is found.
A Release event will release the suspended events while a
Discard event will remove them.

The predicate extent of an XPath predicate in a stream is
a top element while the predicate extent of a predicate in a
FLWOR block is a tuple (ie, the events between two End-
Tuple events). At the beginning of a predicate evaluation,
a Suspend event is generated. The first time the condition
becomes true, a Release event is generated; otherwise, a Dis-
card event is generated at the end of the predicate extent.
That way, if the predicate becomes true before any output
is generated, no buffering is necessary at the final stream
unfolding. The only events that have to be buffered are the
output events received before the predicate becomes true for
the first time. The reason for the introduction of these spe-
cial events is to postpone the buffering until the last stage
of the pipeline (the unfolding), hoping that later stages will
remove some of the suspended events. The price of laziness
is that there may be unnecessary computation performed
on the suspended data to be discarded at the end, which
would not have been done if we had eagerly removed the

unqualified events. Even worse, some of these computations
may cause a run-time error. We address the latter problem
by generating a special event, Error, when a run-time error
occurs, to be discarded or released during unfolding.

Events with nested levels are generated during the evalu-
ation of recursive XPath steps, such as the //* step and the
//part step against recursive XML data in which parts may
contain other parts recursively. For example, evaluating //*

against the stream:

. . . ; StartTag (0 ,0 , a , []) ; StartTag (0 ,0 , b , []) ;
CData (0 ,0 ,X) ; EndTag (0 ,0 , b) ; EndTag (0 ,0 , a) ; . . .

which corresponds to the XML fragment <a>X,
will result to the stream:

. . . ; StartTag (0 ,0 , a , []) ; StartTag (0 ,0 , b , []) ;
StartTag (0 ,1 , b , []) ; CData (0 ,0 ,X) ; CData (0 ,1 ,X) ;
EndTag (0 ,0 , b) ; EndTag (0 ,1 , b) ; EndTag (0 ,0 , a) ; . . .

which represents the two XML fragments <a>X
(level 0) and X (level 1), interleaved into the same
stream, which can be trivially generated without buffering.
That is, each stream event at depth l > 0 is repeated l − 1
times and these copies go to 0 . . . l − 2 levels (the events at
depth 0, of course, vanish).

The nested levels of a stream remain interleaved during
query processing, but get unnested at the stream unfold-
ing stage. Stream unnesting moves and promotes all stream
events to level 0 so that the resulting stream is the same
as the stream that we would have been generated using an
eager evaluation of the recursive XPath steps. More specif-
ically, each nesting level l + 1 is promoted to the nesting
level l by appending the events of level l + 1 to the end of
the current top element of level l (if exists). That is, if β is
a top element of stream number s and level l in the stream
α; β; γ, then α; β; γ is unnested into α; β1; β2; γ, where

β1 = [Xs
′

l′
| Xs

′

l′
∈ β, s′ 6= s ∨ l′ 6= l + 1]

β2 = [Xs

l | Xs

l+1 ∈ β]

That is, to remove the nesting level l + 1 from a stream,
we promote all elements Xs

l+1 to level l and append them
to the end of the current top element of level l (if exists).
Unnesting a level requires a queue of length equal to the
maximum size of the top elements at that level, which could
reach the stream size in the worst case. For example, the
above multi-level stream is unfolded into:

. . . ; StartTag (0 ,0 , a , []) ; StartTag (0 ,0 , b , []) ;
CData (0 ,0 ,X) ; EndTag (0 ,0 , b) ; EndTag (0 ,0 , a) ;
StartTag (0 ,0 , b , []) ; CData (0 ,0 ,X) ; EndTag (0 ,0 , b) ; . . .

which corresponds to <a>XX. By delay-
ing the stream unfolding up to the last moment, we antic-
ipate the reduction/removal of events at all levels by later
iterators, which may reduce the buffer requirements of the
final unfolding. For example, the step /A in //*/A will work
on all levels and will remove all but the A elements. The
obvious drawback is that each iterator must now work on
all stream levels, thus requiring to maintain multiple copies
of its state, one for each level. The consequence of this is
that the memory footprint of an iterator may now be, in the
worst case, proportional to the stream nesting depth.

3. THE XQPULL ITERATORS
Our iterators are instances of subclasses of the abstract

class Iterator:

abstract class I t e r a t o r {
I t e r a t o r input ; // the input i t e r a t o r
short stream ; // the output stream number
void open () ; // open the stream i t e r a t o r
void c l o s e () ; // c lo se the stream i t e r a t o r
Event next () ; } // get the next event

All iterator instances take the form C(s, . . . , input), where s
is the stream number of the output stream and input is the
previous iterator in the pipeline. The only iterator subclass
that does not have an input is Kick(s), which generates a
stream with a single EndTuple:

StartStream (s) ; EndTuple (s) ; EndStream(s)

This iterator always forms the beginning of a pipeline. Pars-
ing the input using the XMLPull pull-based parser [13] is
accomplished with the iterator Document(s,s’,url,input), which
parses and tokenizes the document into the stream s as many
times as the number of EndTuple events received from the
stream s′ of the input. At the beginning/end of each pars-
ing, it emits a matching StartTag/EndTag pair to capture
the implicit document root. At the end of each parsing, it
emits an EndTuple event. The input iterator is typically a
Kick, but in the case of an XQuery join, it may be a pipeline
starting from another Document iterator, thus implement-
ing a nested loop join.

An iterator example is Child(stream,tag,input), which imple-
ments the XPath step /tag. The method, next, of the Child
iterator has the following code (some cases are omitted):

Event next () {
while (true) {

Event t = input . next () ;
i f (t . stream != stream)

return t ;
else i f (t instanceof StartTag) {

i f (nest [t . l e v e l]++ == 1) {
pass [t . l e v e l] = tag . equa l s (t . tag) ;
i f (! pass [t . l e v e l])

continue ;
}

} else i f (t instanceof EndTag)
i f (−−nest [t . l e v e l] == 1

&& pass [t . l e v e l]) {
pass [t . l e v e l] = fa l se ;
return t ;

} ;
i f (pass [t . l e v e l])

return t ; }}

For each substream l of the input stream, this method uses
the counter nest[l] to keep track of the current nesting depth
and the flag pass[l] to indicate whether we are currently pass-
ing through or discarding events. Since we do not know the
maximum depth beforehand, these vectors are implemented
as growable arrays of objects. Note that events from other
streams are passed through as is.

3.1 Predicates
The pipeline of the XPath predicate e1[e2] is formed by

constructing the pipelines for e1 and e2 recursively, cloning
the output of the pipeline e1, and passing the cloned stream
through the e2 pipeline as is. Then, both the cloned e1 and
the output of e2 are sent to the Predicate iterator, which em-
beds Suspend/Discard/Release events to the cloned stream
e1 based on the stream e2. For example, if E is the pipeline
for e, then the pipeline for e[A] can be:

Pred icate (5 ,8 , Child (8 ,A, Clone (8 ,5 ,E)))

Clone(cstream,stream,input) repeats each input event twice
but the replica is assigned the stream number cstream. All

iterators in the e2 pipeline work only on the cstream, thus
passing through stream as is. The endpoint of the predicate
testing is the iterator Predicate(stream,cstream,input), which
has the following method, next:

Event next () {
while (true) {

i f (l a s t != null) {
Event e = l a s t ;
l a s t = null ;
return e ;

} ;
Event t = input . next () ;
i f (t . stream == cstream) {

i f (t instanceof CData
&& ! r e l e a s e [t . stream]) {

r e l e a s e [t . stream] = true ;
return new Release (stream , t . l e v e l) ;

} else continue ;
} else i f (t . stream != stream)

return t ;
i f (t instanceof StartTag) {

i f (nest [t . l e v e l]++ == 0) {
r e l e a s e [t . stream] = fa l se ;
l a s t = t ;
return new Suspend (stream , t . l e v e l) ;

}
} else i f (t instanceof EndTag)

i f (−−nest [t . l e v e l] == 0
&& ! r e l e a s e [t . stream])

l a s t = new Discard (stream , t . l e v e l) ;
return t ; }}

Here we use the flag release [l] to remember whether the
outcome of the predicate has already been determined to be
true, that is, when we have received any CData event in the
stream cdata at level l that comes from the condition pipeline
(e2). For XPath predicates, the predicate extent is a top
element, which means that when we encounter a StartTag at
depth 0 in the original stream, we set release to false and we
generate a Suspend event. When we encounter an EndTag
at depth 0 and release is still false, we generate a Discard
event. (Missing from the above pseudo-code is the handling
of Suspend/Discard/Release events in the cstream, which
requires to suspend/discard/release release [l].) For FLWOR
predicates, the condition extent spans a single tuple. Thus
the FLWOR Predicate operator, called FPredicate, emits
Suspend/Discard events at the beginning/end of each tuple,
respectively.

3.2 Recursive XPath Steps

As explained in Section 3, the iterator for the XPath step
//∗, called DescendantAny, generates a stream with multiple
levels, one level for each nesting depth > 0. The method,
next, of this iterator is the following:

Event next () {
while (true) {

i f (repeat > 0)
. . . // see below

Event t = input . next () ;
i f (t . stream != stream)

return t ;
else i f (t instanceof StartTag) {

i f (nest [t . l e v e l]++ > 0) {
l a s t = t ;
repeat = nest [t . l e v e l]−1;

}
} else i f (t instanceof EndTag) {

i f (−−nest [t . l e v e l] > 0) {
l a s t = t ;
repeat = nest [t . l e v e l]−1+1;

}
} else i f (nest [t . l e v e l] > 1) {

l a s t = t ;

repeat = nest [t . l e v e l] −1; }}}

That is, each event at nesting level i is repeated i− 1 times.
The code for repeating an event is a bit tricky:

i f (repeat > 0) {
Event e = l a s t . c l one () ;
short i = 0 ;
while (major [i] >= 0 // i n i t i a l l y major [i]<0

&& !(major [i] == e . l e v e l
&& minor [i] == repeat))

i++;
i f (major [i] < 0) { // new numbering

major [i] = e . l e v e l ;
minor [i] = repeat ;

} ;
e . l e v e l = i ;
repeat −−;
return e ; } ;

Since we may have nested substreams in the input stream
too (which form the major level), and for each substream
we need to generate multiple substreams (of minor level),
we need to reassign a unique level for each different (ma-
jor,minor) combination. That is, each incoming event t has
a major order t . level and a minor order repeat (since repeat

is decremented by one for each replica). The new level num-
bering is done with major[i] and minor[i], which are assigned
the new level i. The descendant-of step uses the same num-
bering scheme to handle recursive data.

3.3 FLWOR Blocks
A for-loop in a FLWOR expression is evaluated with the

help of the For iterator. The For iterator removes all the
EndTuple events from the input stream and inserts a new
EndTuple event at the end of each top element in the input
stream. That is, it generates one tuple for each top element.
A let-binding, on the other hand, does not need any special
iterator. Each FLWOR variable, though, (ie, a let- or a
for-variable) is bound to the stream number of its domain.
When a variable is used in a query, it is translated into a
Clone iterator (described in Section 3.1), which duplicates
the variable domain stream. (Recall that cloning duplicates
each event in the stream.) When the variable is used only
once in the query, it may use the original stream without
cloning. At the end of the pipeline of a FLWOR block, the
Implode iterator is used to remove all but the last EndTuple
event from the stream. For example, the XQuery

for $x in fn:doc("a.xml")/A return $x/B

generates the pipeline:

Implode (2 , Child (2 ,B, Clone (2 ,1 , For (1 ,
Child (1 ,A, Document (1 ,0 , ”a . xml” , Kick (0)))))))

That is, $x is bound to stream 1 and is cloned to stream 2
(which can be omitted since $x is used once).

3.4 Constructions
Element construction is done using the Element and Con-

catenate classes. For example, <Q>{$x/A,100,$x/B}</Q> is
formed by evaluating:

Element (3 ,Q, [] , Concatenate (2 ,3 , Child (3 ,B,
Clone (3 ,0 , Concatenate (1 ,2 , Constant (2 ,1 , ”100” ,

Child (1 ,A, Clone (1 ,0 , input))))))))

where input is the input pipeline and $x is bound to the
stream number 0. The iterator Constant generates one CData
event that contains the string constant for each EndTuple
input event. The iterator Element embeds a StartTag at the

beginning and a matching EndTag at the end of each tuple
in the stream. Finally, the Concatenate iterator alternates
the tuples of the two streams, starting from the first. This
is accomplished by queuing the events of both streams as
long as necessary to generate a single output event. During
this process, the queue size may become, in the worst case,
proportional to the input stream size.

3.5 User-Defined Functions
Surprisingly, it was very easy to streamline calls to user-

defined functions. Obviously, we do not want to cache the in-
put tuples and call a function one-tuple-at-a-time. Instead,
we want to pass to the pipeline associated with the function
body a single stream that contains multiple interleaved sub-
streams, one substream per argument. Then this pipeline
will process all the tuples of all the arguments one-event-at-
a-time, without any caching (as is done for concatenation,
construction, etc).

When a function f with n parameters is compiled into
a pipeline, its formal parameters are bound to the stream
numbers 0, . . . , n− 1, which are reserved. Then the transla-
tion of the function body will allocate new stream numbers
to iterators starting from n. The iterator pipeline of the
function body is stored in a hash table, which is available at
run time. This table also includes the number of parameters
n, the stream number of the output, and the total number
of the streams used in f . A call to f generates the itera-
tor Call(s, f, [s1, . . . , sn], input), which associates the stream
numbers s1, . . . , sn to the parameters of f and expects the
output of the call to be delivered under the stream number s.
The Call iterator retrieves and clones the body of f lazily, at
the first next() call, not when the iterator is opened, to ac-
commodate recursive calls. After the f pipeline is retrieved,
its starting point (ie, the Kick) is replaced by the Call input
stream. All the events of the input stream of Call undergo a
translation, called a precall, before they are passed through
the f pipeline and a translation, called postcall, after they
are generated by the f pipeline, just before they returned by
Call. During precall, each input event with stream number
s1, . . . , sn is converted to the stream number 0, . . . , n−1, re-
spectively, while the other stream numbers are incremented
by the total number of streams used in the f pipeline. That
way, there is no overlapping of stream numbers. Of course,
events of the other stream numbers are passed through the
f pipeline as is, as they are supposed to, since XQuery does
not support nested scopes. During the postcall stage, each
event of the f pipeline that belongs to the stream number
of the f output is converted to the stream number s, while
the other stream numbers decrement by the total number of
streams in f . This trick works for recursive functions too,
with no need for a special run-time stack.

3.6 Stepping Backwards
XPath backward axis steps are notoriously difficult to im-

plement efficiently in stream processing [1]. A decent op-
timizer should be able to remove most of them, but there
may be some that cannot be removed. Backward axes can
be implemented by cloning the stream source D immediately
after is generated (such as, after the Document iterator) and
propagating it through the pipeline until is used by the back-
ward step. Then, the iterator that implements a backward
axis is a special join between the incoming stream I and
the cloned stream source D. This is a sliding window join

based on event timestamps (assigned to events when they
are generated by a data source). Given these timestamps,
we can identify all events of the cloned data source stream D
that are clones of some event in I and, at the same time, to
have available all the source events from the stream D. Here
we sketch the implementation of the axis steps ancestor::*
and /.. (parent). Immediately before the AncestorAny it-
erator that implements ancestor::*, the cloned source D
is passed through the DescendantAny iterator, which imple-
ments //* (Section 3.2), that is, each element of the cloned
source at depth l is repeated l times. The AncestorAny it-
erator emits a Suspend event at the beginning of each top
element of the cloned source D at any level and a match-
ing Discard at the end of the element, except when one of
its events is identical with (ie, has the same timestamp as)
an event from the incoming stream I before the end of the
top element, in which case it emits a Release. This method
assumes that the distance between identical events from D
and I does not exceed the sliding window size, which is
true for most operators. Like //*, although it requires a
fixed-size cache locally, it may require a cache proportional
to the stream size during the final unfolding. This method
does not work though if there is a blocking operation in the
pipeline before the backward step that rearranges the order
of events, such as sorting and concatenation. The parent
axis step, works like the /ancestor::* step, but the syn-
chronization in the sliding window takes into account the
element depth so that only events of depth 1 in D and of
depth 0 in I are under consideration.

4. XQUERY PLUMBING
Compiling an XQuery to an iterator pipeline was the eas-

iest part of this project because these iterators correspond
directly to the syntactic features of XQuery and the pipeline
connects these iterators in the same way the correspond-
ing syntactic features are put together to form the query.
Figure 2 gives the rules for the translation. An XQuery
e is translated into the pipeline T ([[e]], (Kick(0), 0)), where
the semantic brackets ([[]]) enclose XQuery syntax (ie, they
represent the abstract syntax tree associated with the syn-
tax). Basically, T ([[e]], (c, s)) translates the XQuery syntax
e into the pair (c′, s′), where c′ is the pipeline whose input
stream comes from the output of the pipeline c and s/s′ are
the input/output stream numbers. Similarly, F([[FL]], (c, s))
translates the sequence of for/let bindings FL in a FLWOR
block (the bottom case is F([[]], P) = P). The binding list
σ is used for binding variables to stream numbers.

In the following examples, for better presentation, instead
of using nested calls to iterator constructors, we display a
query pipeline as a sequence of iterator constructions in re-
verse order of nesting. For example, the predicate pipeline
given in Section 3.1 is displayed as:

1 Clone (8 , 5)
2 Child (8 ,A)
3 Pred icate (5 , 8)

As a complete example, the following XQuery:

fn:doc("cs.xml")/department/student[gpa="3.5"]/name

is translated into:

1 Kick (0)
2 Document (1 ,0 , ” cs . xml”)
3 Child (1 , department)
4 Child (1 , student)
5 Clone (2 , 1)

6 Child (2 , gpa)
7 Constant (3 ,2 , ” 3 .5 ”)
8 Cal l (2 ,= , [2 , 3])
9 Pred icate (1 , 2)

10 Child (1 , name)

and the following XQuery:

for $d in fn:doc("cs.xml")/department,

$s in $d/student[gpa = "3.5"]

return <student>{ $d/name, $s/name }</student>

uses for-loops and concatenation:

1 Kick (0)
2 Document (1 ,0 , ” cs . xml”)
3 Child (1 , department)
4 For (1)
5 Clone (2 , 1)
6 Child (2 , student)
7 Clone (3 , 2)
8 Child (3 , gpa)
9 Constant (4 ,3 , ” 3 .5 ”)

10 Cal l (3 ,= , [3 , 4])

11 Pred icate (2 , 3)
12 For (2)
13 Clone (5 , 1)
14 Child (5 , name)
15 Clone (6 , 2)
16 Child (6 , name)
17 Concatenate (5 , 6)
18 Element (5 , student , [])
19 Implode (5)

XQueries that use more than one document, such as:

<result>{ for $x in fn:doc("a.xml")//b,

$y in fn:doc("b.xml")/d/e

where $x/d = $y/f

return <Q>{ $x/c, $y/g }</Q> }</result>

use a nested loop join implicitly (the parser of b.xml reads
the file as many times as the number of $x tuples):

1 Kick (0)
2 Document (1 ,0 , ”a . xml”)
3 Descendant (1 , b)
4 For (1)
5 Document (2 ,1 , ”b . xml”)
6 Child (2 , d)
7 Child (2 , e)
8 For (2)
9 Clone (3 , 1)

10 Child (3 , d)
11 Clone (4 , 2)

12 Child (4 , f)
13 Cal l (3 , eq , [3 , 4])
14 FPredicate (2 , 3)
15 Clone (5 , 1)
16 Child (5 , c)
17 Clone (6 , 2)
18 Child (6 , g)
19 Concatenate (5 , 6)
20 Element (5 ,Q, [])
21 Implode (5)
22 Element (5 , r e su l t , [])

In the future, we will explore other types of joins that do
not require to parse the document b.xml multiple times.

5. PERFORMANCE EVALUATION
Our prototype system is in its very early stage of imple-

mentation, although many essential XQuery features have
already been implemented. The Java code is available at
http://lambda.uta.edu/XQPull/. The platform used for
our experiments was a 3GHz Pentium 4 processor with 1GB
memory on a PC running Linux. The simulation was done
using Java (J2RE 1.5.0). We used one artificially generated
dataset (XMark) and one real dataset (DBLP):

Benchmark file size events time
XMark X=doc(“data.xml”) 224MB 12.7 10.7
DBLP D=doc(“dblp.xml”) 318MB 31.3 16.2

where events is the number of XMLPull [13] events in mil-
lions and time is the time in seconds used to tokenize the
document. We used nine benchmark queries:

1) X//asia//item[location="Mongolia"]/quantity
2) X//item[location="Mongolia"][payment="Creditcard"]/location
3) X//*[location="Mongolia"]/quantity
4) count(X//item[location="Mongolia"]/..)
5) count(X//item[location="Mongolia"]/ancestor::asia)
6) count(X//item[location="Mongolia"]/ancestor::*//location)

T ([[$v]], (c, s)) = (Clone(s′, σ[$v], c), s′) where s′ = newStream()

T ([[.]], (c, s)) = (Clone(s′, s, c), s′) where s′ = newStream()

T ([[“text”]], (c, s)) = (Constant(s′, s, “text”, c), s′) where s′ = newStream()

T ([[fn:doc(url)]], (c, s)) = (Document(s′, s, url, c), s′) where s′ = newStream()

T ([[e/A]], P) = (Child(s, A, c), s) where (c, s) = T ([[e]], P)

T ([[e1[e2]]], P) = (Predicate(s1, s2, c2), s1) where (c1, s1) = T ([[e1]], P)
and (c2, s2) = T ([[e2]],X (c1, s1))

T ([[<tag attr>{ e }</tag>]], P) = (Element(s, tag, attr, c), s) where (c, s) = T ([[e]], P)

T ([[e1, e2]], P) = (Concatenate(s1, s2, c2), s1) where (c1, s1) = T ([[e1]], P)
and (c2, s2) = T ([[e2]], (c1, s1))

T ([[f(e1, . . . , en)]], (c0, s0)) = (Call(s1, f, [s1, . . . , sn], cn), s1) where ∀i ∈ [1, n] : (ci, si) = T ([[ei]], (ci−1.si−1))

T ([[FL where e1 return e2]], P) = (Implode(s2, c2), s2) where (c, s) = F([[FL]], P)
and (c1, s1) = T ([[e1]], (c, s))
and (c2, s2) = T ([[e2]], (FPredicate(s, s1, c1), s))

F([[for $v in e FL]], P) = F([[FL]], (For(s, c), s)) where (c, s) = T ([[e]], P) and σ[$v] = s

F([[let $v := e FL]], P) = F([[FL]], (c, s)) where (c, s) = T ([[e]], P) and σ[$v] = s

Figure 2: Building the XQuery Pipelines (only the XPath step /A is shown)

7) <result>{
for $c in X//item
where $c/location = "Mongolia"
return <item>{ $c/quantity, $c/payment }</item>

}</result>
8) D//inproceedings[author="Leonidas Fegaras"]/title
9) for $d in D//inproceedings

where contains($d/author,"Fegaras")
order by $d/year
return ($d/year/text(),": ",$d/title/text(),"\n")

and got the following measurements:

Q time T cache CR CL nexts mem

1 15 15 60 0.3% 12% 17 475
2 33 6.8 100 5% 162% 89 677
3 196 1.1 860 184% 572% 683 404
4 114 2 40 55% 473% 326 846
5 32 7 40 3% 200% 95 441
6 120 1.9 40 69% 436% 329 448
7 28 8 80 3% 168% 71 752
8 81 3.9 200 14% 154% 213 561
9 89 3.6 2391 14% 156% 194 778

where time is the execution time in seconds, T is the through-
put in MB/sec, cache is the number of events cached in
queues, CR is the percentage of the extra events created (ie,
in addition to the input events), CL is the percentage of the
created events that have been cloned, nexts is the number
of next() method calls in millions, and mem is the memory
used in Java (totalMemory()-freeMemory()) in KBs. We
can see that the cache used in these queries is very small
because the blocking operations have been postponed to the
end of the evaluation, where the number of events is typ-
ically small (since it is proportional to the query output,
which is expected to be small for casual queries). On the
other hand, the //* and /ancestor::* steps have a consider-
able computational overhead.

6. CONCLUSION
From our experiments, it is now apparent that our meth-

ods can be very effective for some queries but, of course,

there are cases where eagerness is better than laziness. In
the future, we would like to explore more the dichotomy
between these two extremes and develop an optimizer or
maybe a run-time adaptive system that embeds all or parts
of the stream unfolding at some well-chosen points in the
pipeline that result to the best performance.
Acknowledgments: This work is supported in part by the
National Science Foundation under the grant IIS-0307460.

7. REFERENCES
[1] C. Barton, et al. Streaming XPath Processing with

Forward and Backward Axes. In ICDE’03.

[2] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To.
YFilter: Efficient and Scalable Filtering of XML
Documents. In ICDE’02.

[3] L. Fegaras. The Joy of SAX. In XIME-P’04.

[4] L. Fegaras. XQuery Processing with Relevance
Ranking. In XSYM’04.

[5] D. Florescu, et al. The BEA Streaming XQuery
Processor. VLDB Journal 13(3): 294-315 (2004).

[6] D. Florescu, et al. The BEA/XQRL Streaming
XQuery Processor. In VLDB’03.

[7] T. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML Streams with Deterministic
Automata. In ICDE’03.

[8] A. Gupta and D. Suciu. Stream Processing of XPath
Queries with Predicates. In SIGMOD’03.

[9] V. Josifovski, M. Fontoura, and A. Barta. Querying
XML Streams. VLDB Journal 2004.

[10] B. Ludäscher, P. Mukhopadhyay, and
Y. Papakonstantinou. A Transducer-Based XML
Query Processor. In VLDB’02.

[11] Galax. At http://www.galaxquery.org/.

[12] F. Peng and S. Chawathe. XPath Queries on
Streaming Data. In SIGMOD’03.

[13] XPP: An XML Pull Parser. Available at
http://www.extreme.indiana.edu/xgws/xsoap/xpp/.

