An Optimization Framework for Map-Reduce Queries

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/mrql/

Work in collaboration with Chengkai Li and Upa Gupta
Data Processing with Map-Reduce (MR)

- MR facilitates the parallel execution of ad-hoc, long-running, large-scale data analysis tasks on a shared-nothing cluster of commodity computers connected through a high-speed network
 - hides the details of parallelization, data distribution, fault-tolerance, and load balancing
- Several implementations:
 - Apache Hadoop, Google Sawzall, Microsoft Dryad, . . .
- Used extensively by companies on a very large scale
 - Yahoo! manages more than 42,000 Hadoop nodes holding 200 PBs
 - Yahoo!’s biggest cluster: 4,000 nodes
 - more than 22 organizations are running PB-scale Hadoop clusters
- Some higher-level languages that make MR programming easier:
 - HiveQL, PigLatin, Scope, Dryad/Linq, . . .
- Preferred by MR programmers:
 - Pig is used for over 60% of Yahoo! MR jobs
 - Hive is used for 90% of Facebook MR jobs
Alternatives to MR

- Compared to a parallel RDB, the MR framework:
 - is better suited to large-scale data analysis on write-once in-situ data
 - often used to process data as is
 - offers better fault tolerance and the ability to operate in heterogeneous environments

- An MR alternative: BSP (Bulk Synchronous Parallel Architecture)
 - Apache Hama
 - Pregel for graph processing

- still work in progress
- supports a more flexible API
- needs checkpointing for fault-tolerance

An Optimization Framework for Map-Reduce Queries http://lambda.uta.edu/mrql/
The MR Programming Framework

Very simple model: need to specify a map and a reduce task

- the map task specifies how to process a single key/value pair to generate a set of intermediate key/value pairs
- the reduce task specifies how to merge all intermediate values associated with the same intermediate key
An Example with 3 Mappers and 2 Reducers

mapper 0

mapper 1

mapper 2

group-by key

partition function: key mod 2

reducer 0

reducer 1

output 0

output 1
MR programs are computationally complete

Regular SQL (join, selection, projection, group-by, having, order-by) can be directly coded using workflows of MR jobs

Example:

\[
\text{select } v.A, \text{ sum}(v.B) \text{ from } R \text{ as } v \text{ group by } v.A
\]

can be coded in MR as:

```java
class Mapper
    method map ( key, v )
        emit(v.A,v);

class Reducer
    method reduce ( key, values )
        int c = 0;
        for each v ∈ values do c += v.B;
        emit(key,c);
```
Background: Reduce-Side Join

Example:

```
select x.C, y.D
from X as x, Y as y
where x.A = y.B
```

can be coded in MR as:

```
class Mapper1
  method map ( key, x )
    emit(x.A,(1,x));

class Mapper2
  method map ( key, y )
    emit(y.B,(2,y));

class Reducer
  method reduce ( key, values )
    for each (1, x) ∈ values
      for each (2, y) ∈ values
        emit(key,(x.C,y.D));
```
Motivation

Although the MR model is simple, it is hard to develop, optimize, and maintain non-trivial MR applications coded in a general-purpose programming language. To achieve good performance one needs to:

- tune many configuration parameters
- use custom serializers, comparators, and partitioners
- use special optimization techniques, such as in-mapper combining and in-reducer streaming

Program optimization would be more effective if the programs were written in a higher-level query language that hides the implementation details and is amenable to optimization.
Related Work

- Many higher-level languages:
 - HiveQL, PigLatin, PACT/Nephele, SCOPE, Dryad/Linq,…
- HadoopDB: a hybrid scheme between MR and parallel databases
- Manimal: analyzes the MR code to find opportunities for using B^+-tree indexes, projections, and data compression
- Asterix: a scalable platform to store, manage, and analyze large volumes of semistructured data
 - uses its own distributed data store, Hyracks
- YSmart: intra-query optimization by factoring out correlated operations
Goal

Build a query processing system that translates SQL-like data analysis queries to efficient MR jobs

- HDFS as the physical storage layer
 - no indexing, no data partitioning/clustering
 - no normalization
 - no data statistics
- Hadoop as the run-time engine
 - no extensions

In the future, we may relax some of these restrictions
Goal

Build a query processing system that translates SQL-like data analysis queries to efficient MR jobs

- HDFS as the physical storage layer
 - no indexing, no data partitioning/clustering
 - no normalization
 - no data statistics
- Hadoop as the run-time engine
 - no extensions

In the future, we may relax some of these restrictions

But, if we use SQL and completely hide the MR layer, why don’t we just use a parallel RDB?

- MR is already used extensively; we can’t change this
- a good query processor may simplify and improve the way programmers develop data analysis applications and will make MR computing friendlier to non-expert programmers
- MR is actually good!
What is Wrong with Existing MR Query Languages?

Two major problems (to be justified next):

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries. This may result in suboptimal, error-prone, and hard-to-maintain code.

2. Current MR query processors apply traditional relational query optimization techniques that may be suboptimal in a MR environment.
A MR job over a relation R groups the tuples of R using the map function m and then applies the reduce function r to each group:

```
select k, r(group-values)
from R as v
group by k: m(v)
```

Current MR SQL-like query languages do not allow m and r to be nested queries and do not support access to the entire group, `group-values`, other than performing simple aggregations over the group elements.

Example: calculate one step of the k-means clustering algorithm by deriving k new centroids from the old

```
select avg(s.X) as X, avg(s.Y) as Y, avg(s.Z) as Z
from Points as s
group by (select * from Centroids as c order by distance(c,s))[0]
```
A MR query language must

- allow nested queries and UDFs at any level and at any place provided that UDFs are pure (no side effects)
- allow to operate on all the grouped data using queries as is done for ODMG OQL and XQuery
- support custom aggregations/reductions using UDFs provided that they are pure, associative, and commutative
- support recursion or transitive closure declaratively to capture graph algorithms, such as PageRank
- support hierarchical data and nested collections uniformly allowing us to query JSON and XML data
- support custom parsing and custom data fragmentation given that MR does not support nested data parallelism
What is Wrong with Existing MR Query Languages?

Two major problems:

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries. This may result in suboptimal, error-prone, and hard-to-maintain code.
What is Wrong with Existing MR Query Languages?

Two major problems:

1. Current MR query languages have limited expressive power, forcing users to plug-in custom MR scripts into their queries, which may result in suboptimal, error-prone, and hard-to-maintain code.

2. Current MR query processors apply traditional relational query optimization techniques that may be suboptimal in a MR environment.
Can we Optimize MR Queries Using RDB Technology?

Example from TPCH:

```sql
select c.CUSTKEY, c.NAME, avg(o.TOTALPRICE)
from Orders as o, Customer as c
where o.CUSTKEY = c.CUSTKEY
group by c.CUSTKEY, c.NAME
```

Hive evaluates this query using a join followed by a MR job (for the group-by), a total of 2 MR jobs.

This query can also be evaluated using just one reduce-side join. The set of orders fed to the reducer contains complete groups, which are ready for aggregation.

This is true for all queries whose join attributes are also group-by attributes.

Can we patch a relational system to generate this join/group-by plan?
Can we Patch an RDB to Generate Combined Join/Group-By Operations?

By definition, a relational operation must return flat tuples

⇒ A group-by must always be combined with aggregation within the same operator

Consider nested queries (which are important for MR-completeness).

For simple correlated queries, such as

```sql
select f(select h(x,y) 
    from Y as y where x.A=y.B) 
from X as x
```

(where f and h denote some code)

it is not inconceivable that an RDB optimizer could be patched to generate a reduce-side join that incorporates the group-by at the reduce stage... but
Can we Patch an RDB ...?

But what about this double-nested query:

```
select f(select g(select h(x,y,z) from Z as z where z.C=y.D)
          from Y as y where x.A=y.B)
from X as x
```

One good plan is to use two reduce-side joins (2 MR jobs only):

1. a join between X and Y that emits a nested set of pairs (x,ys):
 for each x, the set ys contains all the matching values y
2. a join between the result and Z, which computes the final query result
 at the reduce stage

The reducer of the 2nd join receives two sets (mixed) from the two inputs:
the set XY from the first join, which is the nested set (x, ys), and the set
Zs of z tuples, and evaluates in memory:

```
select f(select g(select h(x, y, z) from z \in Zs)
          from y \in ys)
from (x, ys) \in XY
```
Can we Patch an RDB ...?

The reduce-side join plan again:

1. a join between X and Y that emits a nested set of pairs \((x,ys)\):
 - for each \(x\), \(ys\) contains all the matching values \(y\)

2. a join between the result and Z, which computes the final query result
 at the reduce stage

It is impossible to capture the first join as a purely relational operator

\[\Rightarrow \text{need nested relations!}\]

Side note:

- Some MR query languages use outer-joins with group-bys to simulate
 nested queries
- Bad idea!

 may miss opportunities of using a combined join/group-by
MRQL: the Map-Reduce Query Language

Oh great, yet another query language!

- The MRQL syntax has been influenced by some functional query languages, such as ODMG OQL and XQuery
- The MRQL semantics is based on list comprehensions with group-by and order-by
- It is implemented in Java on top of Hadoop
- Allows arbitrary query nesting, UDFs, custom aggregations, and custom parsers
- Can operate on complex data, such as nested collections and trees
- Can process:
 - record-oriented text documents that contain basic values separated by user-defined delimiters
 - XML and JSON documents
 - binary encoded documents

Note: This work is about optimizing MR queries. It can apply to other suitable languages, such as OQL and XQuery
A MR job:

\[
\text{MapReduce}(m, r) S
\]

transforms a data set \(S \) of type \(\{\alpha\} \) into a data set of type \(\{\beta\} \) using a map function \(m \) and a reduce function \(r \) with types:

\[
m : \alpha \rightarrow \{(\kappa, \gamma)\} \\
r : (\kappa, \{\gamma\}) \rightarrow \{\beta\}
\]

Semantics:

\[
\text{MapReduce}(m, r) S = \text{concatMap}(r) (\text{groupBy}(\text{concatMap}(m) S))
\]

where:

\[
\text{concatMap}(f) : \{\alpha\} \rightarrow \{\beta\}, \quad \text{given that } f : \alpha \rightarrow \{\beta\} \\
\text{groupBy} : \{(\kappa, \alpha)\} \rightarrow \{(\kappa, \{\alpha\})\}
\]

concatMap generalizes \(\pi \), \(\sigma \), and \(\mu \)
MRQL is MR-Complete

Any

MapReduce\((m, r) S\)

can be expressed in MRQL as:

```sql
select w
from z in (select r(key, y)
from x in S,
(k, y) in m(x)
group by key: k),
w in z
```
The reduce-side join

ReduceSideJoin(m_x, m_y, r) (X, Y)

joins the data set X of type $\{\alpha\}$ with the data set Y of type $\{\beta\}$ to form a data set of type $\{\gamma\}$, where

$m_x : \alpha \rightarrow \{(\kappa, \alpha')\}$
$m_y : \beta \rightarrow \{(\kappa, \beta')\}$
$r : (\{\alpha'\}, \{\beta'\}) \rightarrow \{\gamma\}$

The mappers m_x and m_y calculate the join keys κ and the reducer r combines the tuples from X and Y that correspond to the same join key.

Its semantics is given in terms of concatMap, groupBy, and union.

Other join implementations: MapJoin (1 map job), MapJoinReduce (1 MR job), and BlockNestedLoop (1 map job)
The MRQL Query Algebra

Most important algebraic operators: concatMap, groupBy, union, and join

The MRQL join is a restricted version of ReduceSideJoin. It joins the bag X of type $\{\alpha\}$ with the bag Y of type $\{\beta\}$ to form a bag of type $\{\gamma\}$:

$\text{join}(k_x, k_y, r)(X, Y)$

where

$k_x : \alpha \rightarrow \kappa$

$k_y : \beta \rightarrow \kappa$

$r : (\{\alpha\}, \{\beta\}) \rightarrow \{\gamma\}$
Algebraic Optimization

Some optimizations:

- Fusing a join with a group-by if the group-by key is the same as the join key:

\[
\text{join}(\pi_1, k_y, r) (\text{groupBy}(X), Y) \\
= \text{join}(\pi_1, k_y, \lambda(xs, ys).r(\text{groupBy}(xs), ys)) (X, Y)
\]

where \(\pi_1(x, y) = x \)

- Converting a self-join into a simple MapReduce operation that operates over the input data set once:

\[
\text{join}(k_x, k_y, r) (X, X) \\
= \text{MapReduce}(\lambda x. \{(k_x(x), (1, x)), (k_y(x), (2, x))\}, \\
\quad \lambda(k, s). r(\text{select } x \text{ from } (1, x) \in s, \\
\quad \quad \text{select } x \text{ from } (2, x) \in s)) X
\]
Example: The PageRank Algorithm

A web graph is represented as a set of links, where each link has a source, a destination, the total number of its outgoing links, and its current PageRank.

One step of the PageRank algorithm derives a new set of edges from the old set, changing only their rank:

```
select m.source, m.dest, m.count, c.rank
from (select n.dest, sum(n.rank/n.count) as rank
     from Graph as n
     group by n.dest) as c,
     Graph as m
where m.source = c.dest
```

(SQL query)

Needs just 1 MR job:

- fuse the join with the group-by ⇒ a self-join over Graph
- convert the self-join to a single MR job
The Complete PageRank in MRQL

```
graph = select ( key, n.to )
    from n in source(line, "graph.csv", ...)
    group by key: n.id;

preprocessing: 1 MR job

size = count(graph);

select ( x.id, x.rank )
from x in
    (repeat nodes =
        select < id: key, rank: 1.0/size, adjacent: al >
            from (key,al) in graph
        init step: 1 MR job

    step select (< id: m.id, rank: n.rank, adjacent: m.adjacent >,
        abs((n.rank-m.rank)/m.rank) > 0.1)
        from n in (select < id: key, rank: 0.25/size+0.85*sum(c.rank) >
            from c in ( select < id: a, rank: n.rank/count(n.adjacent) >
                from n in nodes, a in n.adjacent )
            group by key: c.id),
        m in nodes
        where n.id = m.id)
    repeat step: 1 MR job

order by x.rank desc;

postprocessing: 1 MR job
```
Query Optimization

The MRQL Query Optimizer

- uses a novel cost-based optimization framework to map algebraic forms to efficient workflows of physical plan operators
- uses a polynomial heuristic algorithm for query graph reduction
- handles deeply nested queries, of any form and at any nesting level, and converts them to near-optimal join plans
- handles dependent joins (used for nested collections and XML data)

Our cost model is currently incomplete

We plan to develop an adaptive optimization system to

- incrementally reduce the query graph at run-time
- extend the reduce stage of a map-reduce operation to generate enough statistics to decide about the next graph reduction step
How does MRQL Compare with Hive?

- For simple join/group-by queries: they are about the same
- For queries that need optimization, such as fusing joins with group-bys, self-joins etc: MRQL is a clear winner
- For complex/nested queries, nested data, complex aggregations: no competition
Performance Evaluation

PageRank evaluation over DBLP (865MB XML) and the Hungarian Web (734MBs, 500K nodes 14M links)
Setup: 8 nodes/32 cores

(B) PageRank over DBLP data with/without optimization

(C) PageRank over the Hungarian Web with/without optimization
Future Work

- Develop a comprehensive cost model
- Self-tuning
- Want to query both raw data and structured data, such as RDBs and key/value indexes, in the same query language
- Want to capture scientific data & computations
 need to introduce the concept of data neighborhood
 need to be able to access ‘adjacent’ data (eg, for data smoothing)
- Want to define complex custom parsers declaratively
 need to go beyond Regular Expressions to capture LALR grammars