A Search Engine for Complex XML Queries

Leonidas Fegaras

Department of Computer Science and Engineering
The University of Texas at Arlington
416 Yates Street, P.O. Box 19015
Arlington, TX 76019-19015

email: fegaras@cse.uta.edu

Abstract

The implicit assumption behind most current XML query languages is that XML data are located in
local or remote repositories at known URL addresses. But there are new proposals for XML languages
now that allow queries over the whole Internet, as is done by current web search engines for web-
accessible HTML documents. The ultimate goal is to see the Internet as a huge distributed database
of XML data, stored in either native or database form, which can be accessed by a distributed query
processing system that allows more powerful, more accurate results than traditional search engines. But
XML query languages go beyond the simple keyword-based boolean formulas supported by current web
search engines. One may wonder how feasible it is to evaluate XML queries that join web documents
at unknown locations. Traditional document indexing techniques, such as inverted files, are based on
keyword content only and may not be very effective for indexing XML data, since structure is an essential
component of XML data.

Inspired by the “text-in-context” XML search engine of the Niagara project, we propose a general
framework for precise indexing of web-accessible XML data. We are presenting an inverse indexing tech-
nique that indexes text words and element tags in an XML document by taking into account the element
structure in the document. Given any complex XML query, our framework is capable of constructing
an OQL query over the inverse index structures, which retrieves all the web-accessible XML document
fragments that satisfy the containment and content constraints of the XML query. Our framework is
based on the idea of state transformation, which is used often to give semantics to procedural languages.
The state in our case is a binding from document variables to OQL queries that compute document
fragments.

1 Introduction

XML has emerged as the leading textual language for representing and exchanging data on the web. Even
though HTML is still the dominant format for publishing documents on the web, XML has become the
prevalent exchange format for business-to-business transactions. It is expected that in the near future the
internet will be populated with a large number of web-accessible XML files. One of the reasons of its
popularity is that, by supporting simple nested structures of tagged elements, the XML format is able to
represent both the structure and content of complex data very effectively. To take advantage of the structure
of XML documents, new query languages had to be invented that go beyond the simple keyword-based
boolean formulas supported by current web search engines. These queries allow a more precise searching
of the web. One can now search for all XML documents containing bibliographies that match a particular
structure and have at least one entry for a paper written by a given author, rather than searching for all
documents that contain the author’s name. Current document indexing techniques, such as inverted files,
are based on keyword content only and may not be very effective for indexing XML data, since structure is
an essential component of XML data.
Users familiar with web search engines would like to write XML queries, such as:

select b.* title
from b in document(“*").*.book
where b.*.author.*.lastname = “Smith”

class Document (extent documents) { attribute string URL; attribute integer size; };
struct word_spec { Document doc; integer level; integer location; };
struct tag_spec { Document doc; integer level; integer ordinal; integer begin_loc; integer end_loc; };

class XML_word (key word extent word_index)
{ attribute string word;
attribute set{ word_spec) occurs; };

class XML_tag (key tag extent tag_index)
{ attribute string tag;
attribute set({ tag spec) occurs; };

Figure 1: The XML Inverse Indexes

to query the entire web for all the XML files that contain book references to find all the books authored
by Smith. Users tend to put as many wildcards in a query as necessary to narrow-down/expand the search
space of the query to get relevant answers. To them, an XML query is an effective means of adding both
structure and content requirements to their web search, which will hopefully result to a more selective and
precise search. The challenge here is to retrieve only those documents from the web that, not only match all
the paths appearing in the query, but also satisfy the query condition. For our example query, we would like
to retrieve all documents from the web that match all the paths in this query, that is, they match the paths
* book.*.title and *.book.*.author.* lastname, and contain the requested partial content information, that is,
they contain at least one book authored by Smith.

We present an inverse indexing technique that indexes content words and element tags in XML doc-
uments by taking into account the element structure of the documents. Inspired by the “text-in-context”
XML search engine of the Niagara project [16, 15], we present a formally verifiable framework for indexing
XML data that is more general than that of Niagara. Like Niagara, our framework uses two inverted lists,
one to index content words and another to index XML tags for all web-accessible XML documents. The main
contribution of our method is related to the way we search these indexes to retrieve relevant documents.
Related approaches retrieve one inverted list for each tag name or word that appears in a path expression and
then perform a kind of intersection between these lists that takes into account the containment restrictions
of the path (derived from the tag order in the path). The order of intersections is important and poor choices
may lead to performance degradation. For instance, there may be many XML documents with the same
top-level tag. Hence, starting the search from that tag may result in the creation of very large intermediate
inverted lists. Our approach is based on the simple idea, first introduced by the Niagara project [16], of
letting the database query optimizer decide the best way to use the indexes based on statistical information.
We present a set of rules that transform a complex XML query into an ODMG OQL [3] query against the
two indexes. This query is called a search query. The result of the search query is a list of relevant documents
that satisfy the original XML query in terms of both structure and content. In contrast to Niagara [16],
which handles simple XPath queries, our framework can process any XML query of arbitrary complexity,
with any number of document(“*") clauses. Even though we have based our translations to our own XML
query language, XML-OQL [9], we believe that our framework can be adapted to handle other complex XML
query languages, such as XQuery [4] and Quilt [5].

In our framework, the search query generated from an XML query may retrieve database data but
should not, in any way, access the web. All the web-accessible XML documents are summarized in two
indexes, described by their ODMG ODL schema in Figure 1. These indexes can be populated off-line by
web crawlers, as is done by current web search engines. The XML_word class associates words to documents.
It is assumed that a typical OODB will create a primary index, such as a Bt -tree, for the primary key. In
that case, the class extent would behave like an inverted list. The occurs attribute contains all occurrences
of a word in all web-accessible XML documents. In addition to the location of the word in a document,
we keep the nesting level (depth) of the word in the document. The second inverted list, tag_index, indexes
XML element tags. For some tag t in a documents D, the begin_loc attribute specifies the location of the
first character of <t> in D while end_loc specifies the location of the last character of the matching </t>.

The ordinal component indicates the relative order of the element within its parent element.
Based on the two inverted lists in Figure 1, our framework translates the example XML query above
into the following search query:

select s
from a in tag_index, x in a.occurs, b in tag_index, y in b.occurs,
¢ in tag_index, z in c.occurs, d in word_index, w in d.occurs, e in tag-index, s in e.occurs

where a.tag = "book” and x.do¢ = y.doc = z.doc = w.doc = s.doc
and b.tag = “author” and x.level < y.level and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc
and c.tag = “lastname” and y.level < z.level and y.begin_loc < z.begin_loc and y.end_loc > z.end_loc
and d.word = "Smith” and z.level4+1 = w.level and z.begin_loc < w.location and z.end_loc > w.location
and e.tag = “title” and x.level < s.level and x.begin_loc < s.begin_loc and x.end_loc > s.end_loc

which returns all the web-accessible document fragments that satisfy the query. It is important to note
that, when retrieved from the web, these document fragments will contain book titles only (namely, all titles
of books written by Smith), and no further testing is necessary. The original XML query itself cannot be
answered from the indexes alone, because book titles cannot be reconstructed from the word_index, since only
the keywords in the title are indexed. But, if the web server of these documents is capable of sending XML
fragments to clients, the title retrievals will take a very short time. One problem with document fragments
is that they become invalid if the documents are changed after are indexed by the web crawler. One way to
solve this problem is to include the timestamp of indexing as part of the Document class. This timestamp is
sent along with a document fragment. The document server must be able to retrieve the proper document
version at the timestamp point and to send the correct fragment.

A typical query optimizer will be able to use the primary indexes of the tag_index and word_index extents
to evaluate the above search query efficiently, since there are key equalities in the query. Since there are five
key equalities in the search query, there are many possible orders of indexing. A typical query optimizer will
be able to select a good order based on statistics (the selectivities of the equalities), which may not necessarily
be the indexed nested-loop join that proceeds from left to right in a path expression, as is implicit in the
current XML search engines. The query graph of the above search query is a chain, but this may not be
necessarily true for complex XML queries. A complex XML query may generate a large number of joins,
one join for each XML projection, which may go beyond the capabilities of current relational database query
optimizers (commercial relational DBMSs can handle up to 20 joins), since they use an exponential join
ordering algorithm. But there are many heuristic cost-based query optimizers that can handle hundreds of
joins. Ome such system is GOO [8], which is a bottom-up greedy algorithm that always performs the most
profitable operations first. Our framework will be implemented on top of the A-DB OODB management
system [11], which uses GOO to optimize queries.

To understand the difficulty of the problem, consider the following XML-OQL query:

select <info><name>e.name</name>,
<title>b.* title< /title>
< /info>
from e in Instructors, b in document(“*").*.book
where b.*.author.name = e.name
and (exists a in document(“http://www.nsf.gov/*").*.award:
a.* Pl.name = e.name and a.*.amount > 100000)

which retrieves the books of all instructors who have received an NSF grant larger than $100K. The instructor
information is stored in the local database, the NSF grant information is searched at the NSF web site, while
the book information is searched over the entire web. We may even have a join between two arbitrary XML
documents, as is implicit in cross-document links supported by XLink, or aggregations over the entire web,
such as count(document(“*")), which counts all web-accessible XML files.

Our framework is based on the idea of state transformation, which is used often to give semantics to
procedural languages. The state in our case is a binding list that associates document variables to OQL
queries over the XML inverse indexes that compute sets of document fragments. A document variable is
a range variable whose domain is all web-accessible XML documents. Each document(“*") in a query is
assigned a different document variable whose initial value is all documents, but is later refined to meet the
structural and content constraints of the query. The state is threaded unchanged through the regular OQL

operations but is modified in the presence of XML path expressions. Our framework is general enough to
handle any XML-OQL query since the only place that needs special attention is during XML paths. Hence,
our framework can be easily adapted to handle any XML query language that supports similar XML path
syntax.

2 Preliminaries: XML-OQL

Our XML query language is an extension of standard OQL [3]. It captures all the important features found
in most recent XML query languages, including XQuery [4] and Quilt [5]. Unsurprisingly, it is not difficult
to extend the OQL syntax with special constructs to handle XML data because these data have a tree-
like structure that can be naturally mapped to linked objects. In fact there are several proposals for such
extensions, such as POQL [6], Ozone [14], Lorel [12], WebOQL [2], and X-OQL [1]. Instead of using one of
the proposed languages, we developed our own, called XML-OQL, because its syntax is better suited for our
translations than other proposals. Unlike other proposals, XML-OQL was designed to have clear semantics
in the form of a well-defined compositional translation into standard OQL (which in turn has clear formal
semantics in the form of complex object algebras and calculi [10, 7]). It also supports a decidable type-
checking system, well integrated with the type-checking system of OQL. The semantics and type-checking
rules for XML-OQL are given elsewhere [9].

XML-OQL is essentially OQL extended with XML path expressions and XML data constructions. For
example, the following XML-OQL query retrieves information about books written by more than two authors,
published after 1995, and containing the word “computer” in their title, along with the titles of their related
documents:

select <bib><author>b.author.lastname < /author>,
<title>b.title< /title>,
<related>select <title>r title</title>
from r in b.Qrelated_to </related>
< /bib>
from b in document(“bibliography.xml").bib.*.book
where b.year>1995 and count(b.author)>2 and contains(b.title, “computer”)

which conforms to the following partial DTD:

<!ELEMENT bib (vendor*)>

<IELEMENT vendor (name, email, book*)>

<IATTLIST vendor id ID #REQUIRED>

<!ELEMENT book (title, publisher?, year?, price, author+)>
<IATTLIST book ISBN ID #REQUIRED>

<IATTLIST book related_to IDrefs>

<IELEMENT author (firstname?, lastname)>

where the rest of the elements are #PCDATA.

OQL is a very powerful functional query language that allows complex expressions to be composed
from simpler ones. By following the OQL philosophy, the XML-OQL syntactic extensions to OQL are
allowed to appear at any place an OQL expression is expected, including in complex aggregations, universal
quantifications, sorting, and group-bys. In addition, ODL data can be converted to XML data, and vice
versa, and may both mixed together in the same query.

XML data in our framework are either schema-less (semi-structured) data or schema-based data. This
distinction is hidden from programmers: if schema-less XML data are assigned a schema and, thus, become
schema-based, queries do not need to be changed. The optional schema information is used in catching
errors at compile-time, rather than run-time, in disambiguating terms with multiple interpretations, such as
wildcard tag projections, in choosing the storage format for the XML data, and in generating efficient OQL
code guided by the choice of storage. The XML-OQL typechecking rules and the translation schemes from
XML-OQL to OQL are described in another paper [9]. Here we only give a brief description of XML-OQL.

XML elements are constructed using the following syntax in XML-OQL:

<tag a; = uq ... Gy = Uy ey, ..., e,</tag>

for m,n > 0. This expression constructs an XML element with name, “tag”, attributes ai,...,a,,, and
subelements ey, ..., e, for content. Each attribute a; is bound to the result of the expression u;. XML data
can be accessed directly from a database by name, retrieve(“bibliography”), or can be downloaded from a
local file or from the web using a URL address, such as document(“http://www.acm.org/xml/journals.xm!").
The tree structure of XML data can be traversed using path expressions of the form:

e.A projection over the tag name A (tag projection)

e._ projection over any tag (any projection)

e.x all subelements of e at any depth (wildcard)

e.@A projection over the attribute A of e (attribute projection)
e[\v = €'] the subelements of e that satisfy the predicate €' (filtering)

ele'] the subelement of e at position e’ (indexing)

eler : ea] all subelements of e starting at position e; and ending at position e; (range indexing)

where e,€’,er, and es are XML-OQL expressions, A is a tag or an attribute name, and v is a variable.
Filtering is an unambiguous version of XPath’s element filtering: For each subelement v of e, it binds the
variable v to the subelement and evaluates the predicate e’. The result is all subelements of e that satisfy
e'. The scope of variable v is within the expression e’ only. Note that e.A is slightly different from the path
expression e/A found in languages based on XPath, since e.A strips out the outer tag names <A>...
from e. Note also that our syntax allows IDref dereferencing, as is done for r.title in the inner select-statement
of our example query, since variable r is an IDref that references a book element.

A few words about the XML-OQL typing system. Schema-less XML data are of the ODL type, XML,
while schema-based data are of the ODL type, XML][t], where t is an XDuce-style XML type [13]. Schema-
based XML-OQL path expressions can be easily and unambiguously typechecked and translated to OQL [9].
Schema-less XML-OQL path expressions are translated to OQL expressions against a fixed schema and
have a high cost: A tag projection requires unnesting (i.e. scanning of the list of subelements) while a
wildcard projection requires a transitive closure, which can be simulated with a call to a recursive OQL
function. The typing of schema-less paths is easier though: if e is of type XML or list{ XML), then e.A is
of type list{ XML). The typechecker may wrap an XML-OQL path with the following coercion functions
when necessary: element (a function from list{(XML) to XML), XML _to_string (from XML to string), and
XML _to_int (from XML to integer), as is done for the predicate b.year>1995 in the above query. The wrapping
is done during the type equivalence (or type unification) testing between two types. For example, since
the left operand of b.year>1995 has type list{ XML) where an integer was expected, the typechecker will
convert it into XML _to_int(element(b.year))>1995. The OQL element function may raise a run-time exception,
which basically materializes the run-time typechecking. XML constructions are always schema-less: The
elements e; of the element construction <A>ey,...,e, are expected to be of type list{ XML). Hence
an integer/string e; is lifted to an XML object, an XML object is lifted to a singleton list{ XML) value,
and an XML[t] value is converted to an XML object (through a schema-driven function). Handling XML
constructions as schema-based values is a better alternative that we have not investigated, but requires a
complex, incomplete type inference [13].

3 The Construction of the Search Query

This section presents the main contribution of this paper, namely the generation of a web search query from
a web-accessing XML-OQL query. We will first concentrate on XML-OQL queries that may contain multiple
document(“*") references, but will later extend our framework to handle patterns in document names (URL
patterns). The main idea of our approach is to assign a unique variable name to each document(“*") clause
in a query, called a document variable, and bind it to a set of document fragments in a binding list o. A
document fragment is of type:

struct doc_fragment { Document doc; integer level; integer begin_loc; integer end_loc; };

and specifies the depth level and the location of an element <t>...</t> in a document doc. That is, the
begin_loc attribute specifies the location of the first character of <t> in the document while the end_loc
attribute specifies the location of the last character of the matching </t>. A document fraction contains a
document element needed by the query. That is, it is an element that satisfies the structural and content
requirements of the query. The binding list, o, is of type

set((string, set(doc_fragment)))
and associates a name to a set of document fragments. It supports the following two operations:

e o[v/e] extends or updates o with the binding from the document variable v to a set of fragments e.

e o[v] retrieves the document fragments associated with the document v.

Our translation schemes are compositional, that is, the translation of an XML-OQL expression does
not depend on the context in which it is embedded; instead, each subexpression is translated independently,
and all translations are composed to form the final OQL query. This property makes the soundness of our
translations easy to prove. Even though compositional translations are easy to express and verify on paper,
the produced translations may contain many levels of nested queries, which can be overwhelmingly slow if
they are interpreted as is. Hence, essential to the success of our framework is an OODB system that supports
basic query unnesting, as is the case for the A-DB OODB management system [11]. The most common form
of query unnesting that we expect any OODB system to be able to support is when the domain of a range
variable is the result of another OQL query:

select h; from ..., v in (select hy from vy in ey, ..., v, in e, where p,), ... where p;
In that case, the query can be simply rewritten into:
select h; from ..., vy in ey, ..., v, in e,, v in {ho}, ... where p; and p,

which may require some variable renaming to avoid variable capture. The resulting query can be further
reduced by removing v in {hs} and substituting v for hs.

3.1 State Propagation

The binding list, o, contains one binding for each document variable in a query. The initial binding of a
document variable is the set of all documents accessible on the web but is eventually refined to meet the
structural and content constraints of the query. The structural refinements are based on the tag_index while
the content refinements are based on the word_index. The content refinements are very complex to capture
as they may involve complex relationships between XML-OQL paths, which may be combined in complex
boolean expressions or in existential and universal quantifications. One way to approach this problem in
formal semantics is through state transformers. In the context of our translations, the state is the binding
list, o, which must be threaded through all XML-OQL operations in a query, and be refined in the presence
of structural or content constraints.

State transformers are often used to give semantics to procedural languages. One way of handling side
effects in denotational semantics is to map terms that compute first-order values of type 7" into functions of
type S =T x S, called state transformers, where S is the type of the state in which all side effects take place.
That is, a term of type T is mapped into a function that takes some initial state so of type S as input and
generates a value of type T and a new state s;. If a term performs side effects, the state transformer maps
so into a different state s; to reflect these changes. Otherwise, the state remains unchanged. For example,
the constant integer, 3, is mapped into the state transformer \s.(3,s) which propagates the state as is.

Our state transformer is a bit unconventional: A first-order value e of type T is lifted to a state
transformer 7[e] of type S — set(T x S), where S is the type of the binding list . We decided that the
state transformer returns a set of pairs rather than one pair to allow multiple returned values for different
states, as it will be apparent when we give semantics for content restrictions. The semantic brackets, [],
give the meaning of the syntax enclosed by the brackets in terms of pure OQL. In general, if e is of type ¢,
then the type of T[e], denoted by t*, is defined inductively as follows:

(t1—=t2)* = S—set{(t1 —t5) x S) for a higher-order type
t* = S—oset{txS) for a first-order type t

The following equations give the standard interpretation of the call-by-value A-calculus with state propaga-
tion:

Tlvlo = {(v,0)} 1)
Tl(e1,e2)]o = select ((v1,v2),02) from (vi,01)inT[e1] o, (va,02)inT[es] o1 (2)
Tl v.elo = {(AvAo'.T[e]o', 0)} (3)
Tlerex]o = select (v,03) from (f,01)inT[e1] o, (z,02)inT[ex] o1, (v,03)in(f z02) 4)

Rule (3) handles higher-order terms. For example, 7 [\v.v] has type S — set((T —S —set(T x S)) x S)
and is translated into {(Av.Ao’.{(v,0")},0)} when applied to a state o. Rule (4) assumes a call-by-value
interpretation: es in the function application e; (e2) is evaluated before e; is applied.

Threading the state through a select-from-where OQL statement is more complex. We translate queries
of the form:

select ey from vy in ey, ..., v, in e, where ¢,

in steps, one range variable at a time. First, we classify the range variables v; into two categories: those
ranging over XML values and those ranging over standard ODL collections. If v; ranges over an XML value
e1, then

T[select ep, from v; in eq, v2 in e, ..., v, in e, where ¢p] o

is equal to:

select (w, o2)
from (v1,01) in T[ei] o,
(w,02) in T[select e, from v, in ey, ..., v, in e, where e,] o1

Otherwise, if v; ranges over a collection, the above query becomes:

select ((select h from v, in s, h in w), o3)
from (s,01) in Tei] o,
(w,02) in T[select e, from vy in ey, ..., v, in e, where ¢,] 01

The bottom case is when there are no more range variables. In that case, select e;, from where e, is equiv-
alent to if e, then { e, } else { }. Hence, T [select e, from where e,] o, has the following interpretation:

select (if p then { h } else { }, 02)
from (p,01) in Tey] o,
(h,02) in Tex] o1

More complex query forms with a group-by, order-by, etc, can be handled in a similar way.

The above rules thread the state o without changing it. The state changes in the presence of XML-OQL
paths, as it is described in the next subsection. These rules will be our guidelines for translating the XML-
OQL paths: the state is propagated through the component expressions in the same order as the evaluation
order in the call-by-value A-calculus. The above rules satisfy a very important property: if e is a standard
first-order OQL expression (i.e., an OQL query that does not contain XML-OQL paths), then T[e] o is equal
to {(e,0)}, as it can be easily verified using structural induction.

Note that we have expressed our semantics using OQL pseudo-code (the distinct keyword has been
omitted and pair patterns have been used as range variables). A more elegant way of expressing the semantics
would have been in terms of monads and monad comprehensions, which are often used in lazy functional
languages to hide the standard (and ugly) plumbing. But our goal is to generate OQL code, which will
constitute the synthesized search query, because we would like to use a standard OQL optimizer to optimize
this code. (After all, OQL queries are equivalent to comprehensions.)

3.2 Non-Standard Interpretation of XML-OQL Paths

In our interpretation, an XML-OQL path expression is mapped to a variable name, which is bound in ¢ to
a set of document fragments that satisfy the path expression. A new variable name, nv, is created for each

document(“*") expression:

T[document(“*")Jo = {(nv,o[nv/(select doc: d, level: 0, begin_loc: 1, end_loc: d.size
from d in documents)])}

The variable name associated with the tag projection e.A is equal to that of e. The binding of this variable
is refined to retrieve the sub-fragments tagged with A:

Tle-A]le = select (v,o'[v/(select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in ¢'[v], a in tag_index, y in a.occurs
where a.tag = “A” and x.doc = y.doc and x.level+1 = y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)])
from (v,0') in T[e]o

If e is a wildcard projection, then x.level < y.level is used in the predicate instead of x.level4+1 = y.level.
Under that correction, 7 [e.x] is equal to T[e]. The interpretation of 7T [e._] is the same as T[e], but with
an increased depth level:

Tle.Jo = select (v,0'[v/(select doc: x.doc, level: x.level+1, begin_loc: x.begin_loc, end_loc: x.end_loc
from x in ¢'[v])])
from (v,0') in T[e] o

Indexing uses the value of the index as the ordinal for the sub-element:

Tleile2]lo = select (v, 02[v1/(select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in o2[v1], a in tag_index, y in a.occurs
where a.ordinal=v2 and x.doc = y.doc and x.level+1 = y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)])
from (vi,01) in T[ei] o, (v2,02) in T[ez] o1

while index ranging retrieves all sub-elements with ordinal number between the range values:

Tleilez : es]] o = select (v1,03][v1/(select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in o3[v1], a in tag_index, y in a.occurs
where vs < a.ordinal < vz and x.doc = y.doc and x.level+1 = y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)])
from (v1,01) in Tei1] o, (v2,02) in T[es] o1, (v3,03) in Tes] o2

Finally, the predicate of filtering is handled as a lambda abstraction:

Tlei[\v = e2]] o = select (vy,03[v1/(select w from w in o3[v1] where (f wo3))])
from (vi,01) in Tlei] o, (f,02) in T[Av.es] o1

There are two places where XML paths can appear in XML-OQL queries: The first place is when a range
variable ranges over the elements of an XML-OQL path, as is b in the statement b in document(“*").*.book
in our first example query. In that case, b is bound to the document variable, and when is referenced, the
value o[b] is returned, where ¢ is the current state. The second place is when the element content returned
by an XML-OQL path, e, is coerced to a string or an integer, as is the path b.*.author in the predicate
b.* author = “Smith” in our example query. In that case, the XML-OQL typechecker will wrap e with the
proper coercion function, such as, XML _to_string(e) to coerce e to a string. The coerced XML value is
translated as follows:

T[XML_to_string(e)]o =
select (a.word, o'[v/(select doc: y.doc, level: y.level, begin_loc: y.location, end_loc: y.location
from x in ¢'[v], y in a.occurs
where x.doc = y.doc and x.level+1 = y.level
and x.begin_loc < y.location and x.end_loc > y.location)])
from (v,0') in T[e] o, a in word_index

That is, the returned value is a keyword in word_index that satisfies the structural constraints. Since there
may be many such keywords, a set of word/binding-list pairs is returned. The idea behind this translation
is to generate, for example, a comparison a.word=b.word from a predicate e; = ez that compares two XML
paths e; and ez, which will hopefully suggest the use of an efficient equijoin algorithm to the query optimizer.
Predicates of the form e cmp ¢, where e returns an XML value, ¢ is a string constant, and cmp is a string
comparison operator, can be handled by the above coercion rule but can be utilized better by the following
translation:

Tlecmp o =
select (true, o'[v/(select doc: y.doc, level: y.level, begin_loc: y.location, end_loc: y.location
from x in ¢'[v], a in word_index, y in a.occurs
where a.word cmp ¢ and x.doc = y.doc and x.level+1 = y.level
and x.begin_loc < y.location and x.end_loc > y.location)])
from (v,0') in T[e]o

4 A Complete Example

In this section, we synthesize a search query for the following XML-OQL query:

T select b
from b in document(“*").*.book
where b.*.author = “Smith”] { }

According to our standard interpretation rules for a select-from-where OQL statement, the search query is:

select (if p then { h } else { }, 03)

from (b,o1) in 7 document(“*").*.book] { }.
(p,02) in T b.*.author = “Smith"] oy,
(h,o3) in T[b] o2

We first expand T document(“*")] { } using the first non-standard interpretation rule:
{(“d", {(“d", (select doc: d, level: 0, begin_loc: 1, end_loc: d.size from d in documents))})}
where “d” is a new document variable. The expression 7 document(“*").*.book] { } is expanded to:

select (v, o'[v/(select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in ¢'[v], a in tag.index, y in a.occurs
where a.tag = “book” and x.doc = y.doc and x.level < y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)])
from (v,0') in 7| document(*“*")] { }

which, using the previous form for document(“*"), becomes:

{(“d", {(“d", select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in (select doc: d, level: 0, begin_loc: 1, end_loc: d.size from d in documents),
a in tag_index, y in a.occurs
where a.tag = "book” and x.doc = y.doc and x.level < y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)})}

and, after normalization, is simplified into the form:

{("d", {(“d", select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from d in documents, a in tag_index, y in a.occurs
where a.tag = "book” and d = y.doc and 1 < y.level
and 1 < y.begin_loc and d.size > y.end_loc)})}

We then translate the XML-OQL path 7 b.*.author | o1:

select (v,o'[v/(select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in ¢'[v], a in tag_index, y in a.occurs
where a.tag = “author” and x.doc = y.doc and x.level < y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)])
from (v,0') in o1[b]

which, after substitution of o1[b] and normalization, becomes:

{("d", {(“d", select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from x in ¢1["d"], a in tag.index, y in a.occurs
where a.tag = “author” and x.doc = y.doc and x.level < y.level
and x.begin_loc < y.begin_loc and x.end_loc > y.end_loc)})}

which in turn is simplified to:

{(“d", {(“d", select doc: y.doc, level: y.level, begin_loc: y.begin_loc, end_loc: y.end_loc
from d in documents, b in tag_index, z in b.occurs, a in tag_index, y in a.occurs
where b.tag = “book” and d = z.doc and 1 < z.level
and 1 < z.begin_loc and d.size > z.end_loc
and a.tag = “author” and z.doc = y.doc and z.level < y.level
and z.begin_loc < y.begin_loc and z.end_loc > y.end_loc)})}

According to the last rule for string comparisons, 7 [b.*.author = “Smith"] oy is equal to:

select (true, o'[v/(select doc: y.doc, level: y.level, begin_loc: y.location, end_loc: y.location
from x in ¢'[v], a in word_index, y in a.occurs
where a.word = “Smith” and x.doc = y.doc and x.level4+1 = y.level
and x.begin_loc < y.location and x.end_loc > y.location)])
from (v,o’) in T[b.*.author] o1

and becomes after simplification:

{(true, {(“d", select doc: y.doc, level: y.level, begin_loc: y.location, end_loc: y.location
from d in documents, b in tag_index, z in b.occurs,
¢ in tag_index, w in c.occurs, a in word_index, y in a.occurs
where b.tag = “book” and d = z.doc and 1 < z.level
and 1 < z.begin_loc and d.size > z.end_loc
and c.tag = “author” and z.doc = w.doc and z.level < w.level
and z.begin_loc < w.begin_loc and z.end_loc > w.end_loc
and a.word = “Smith” and w.doc = y.doc and w.level+1 = y.level
and w.begin_loc < y.location and w.end_loc > y.location)})}

Finally, we put together all the components to form the final translation:

{({"d"}, {(“d", select doc: y.doc, level: y.level, begin_loc: y.location, end_loc: y.location
from d in documents, b in tag_index, z in b.occurs,
c in tag_index, w in c.occurs, a in word_index, y in a.occurs
where b.tag = “book” and d = z.doc and 1 < z.level
and 1 < z.begin_loc and d.size > z.end_loc
and c.tag = “author” and z.doc = w.doc and z.level < w.level
and z.begin_loc < w.begin_loc and z.end_loc > w.end_loc
and a.word = “Smith” and w.doc = y.doc and w.level+1 = y.level
and w.begin_loc < y.location and w.end_loc > y.location)})}

5 Extensions

Attribute projections, e.QA, in our framework are treated in the same way as tag projections. An extra
boolean attribute can be added to the class XML _tag to distinguish a tag from an XML attribute and to make
the search more accurate. The XML-OQL syntax, though, allows IDref dereferencing, as is done for r.title
in the inner select-statement of the example query in Section 2, since variable r is an IDref that references a
book element. IDref dereferencing requires a special index on all IDs of all web-accessible XML documents:

class XML_IDref (key ID extent IDref_index)
{ attribute string ID;
attribute set(tag spec) occurs; };

To handle patterns in URLs, as in document(“http://*.edu/* /technical-reports/*"), which retrieves XML
documents from the .edu domain in some technical-reports directory, can be handled using the following index:

struct url_spec { Document doc; integer level; };

class XML _url (key name extent url_index)
{ attribute string name;
attribute set({ url_spec) occurs; };

For example, the above URL pattern will require an OQL query that intersects all documents in url_index
associated with the name edu with all those associated with the name technical-reports satisfying the appro-
priate containment restriction.

One assumption made earlier was that equalities between XML paths are between keywords, which
are indexed by the inverse index, word_index. But suppose that we want to search using exact con-
tent, such as, b.title="A Search Engine for Complex XML Queries”, or perform pattern matching, such as,
b.title like “* Search Engine * XML Queries”. These queries too can be evaluated with self-joins over word_index,
by ignoring non-keywords and specifying containment constraints for the keywords.

10

6 Conclusion

We have presented a general framework for a precise indexing of web-accessible XML data. Unlike related
proposals, our framework can be applied to complex XML queries. For any XML-OQL query, our framework
is capable of generating one OQL query over the XML inverse indexes to return all the relevant web-accessible
XML document fragments that satisfy the XML query. We are planning to implement our framework on
top of the A-DB OODB management system, which already handles semi-structured XML-OQL queries over
database-resident XML data.

Acknowledgments: This work is supported in part by the National Science Foundation under the grant
11S-9811525 and by the Texas Higher Education Advanced Research Program grant 003656-0043-1999.

References

[1] S. Abiteboul, V. Aguilera, S. Ailleret, B. Amann, S. Cluet, B. Hills, F. Hubert, J.-C. Mamou, A. Marian,
L. Mignet, T. Milo, C. S. dos Santos, B. Tessier, and A.-M. Vercoustre. XML Repository and Active Views
Demonstration. In Proceedings of 25th International Conference on Very Large Data Bases (VLDB’99), Edin-
burgh, Scotland, pages 742—745, 1999.

[2] G. Arocena and A. Mendelzon. WebOQL: Restructuring Documents, Databases, and Webs. In Proceedings of
the Fourteenth International Conference on Data Engineering, Orlando, Florida, pages 24-33, Feb. 1998.

[3] R. Cattell, editor. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[4] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery: A Query Language for XML .
W3C Working Draft. Available at http://www.w3.org/TR/xquery/, 2000.

[5] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for Heterogeneous Data Sources.
In ACM SIGMOD Workshop on The Web and Databases (WebDB’00), Dallas, Tezas, pages 53—62, May 2000.

[6] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Documents to Novel Query Facilities.
In Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, pages 313-324, May 1994.

[7] S. Cluet and C. Delobel. A General Framework for the Optimization of Object-Oriented Queries. In Proceedings
of the ACM-SIGMOD International Conference on Management of Data, San Diego, California, pages 383-392,
June 1992.

[8] L. Fegaras. A New Heuristic for Optimizing Large Queries. In 9th International Conference, DEXA’98, Vienna,
Austria, pages 726-735. Springer-Verlag, Aug. 1998. LNCS 1460.

[9] L. Fegaras and R. Elmasri. Query Engines for Web-Accessible XML Data . To appear in VLDB 2001. Available
at http://lambda.uta.edu/v1db01.ps.gz, 2001.

[10] L. Fegaras and D. Maier. Optimizing Object Queries Using an Effective Calculus. ACM Transactions on
Database Systems, Dec. 2000.

[11] L. Fegaras, C. Srinivasan, A. Rajendran, and D. Maier. A-DB: An ODMG-Based Object-Oriented DBMS. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Tezas, page
583, May 2000.

[12] R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML: Migrating the Lore Data Model
and Query Language. In ACM SIGMOD Workshop on The Web and Databases (WebDB’99), Philadelphia,
Pennsylvania, pages 25-30, June 1999.

[13] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression Types for XML. In ACM SIGPLAN International
Conference on Functional Programming (ICFP’00), Montreal, Canada. ACM Press, Sept. 2000.

[14] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating Structured and Semistructured Data . In 7th Inter-
national Workshop on Database Programming Languages, DBPL’99, Kinloch Rannoch, Scotland, UK, volume
1949 of Lecture Notes in Computer Science, pages 297-323. Springer, Sept. 1999.

[15] J. Naughton, D. DeWitt, and D. Maier. The Niagara Internet Query System . Submitted for publication.
Available at http://www.cs.wisc.edu/niagara/, 2000.

[16] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting Containment Queries in Rela-
tional Database Management Systems. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, Santa Barbara, May 2001.

11

