
Compile-Time Code Generation for
Embedded Data-Intensive Query Languages

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/

http://lambda.uta.edu/

Outline

Emerging DISC (Data-Intensive Scalable Computing) systems

Introducing DIQL: the Data Intensive Query Language

The monoid algebra

Incremental query processing

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 2

DISC Programming Environments

Designed for large-scale data processing on computer clusters

Often work on raw data – indexes are uncommon

They hide the details of distributed computing, fault tolerance,
recovery, etc

Many provide functional-style APIs
using powerful higher-order operations as building blocks
preventing interference among parallel tasks

But some programmers are unfamiliar with functional programming

Hard to develop complex applications when the focus is in optimizing
performance

Too many competing DISC platforms:
Map-Reduce, Spark, Flink, Storm, . . .

Hard to tell which one will prevail in the near future

. . . or you can use a query language that is independent of the
underlying DISC platform!

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 3

Limitations of Current DISC Query Languages

They are subsets of SQL.
But raw data is often nested, not normalized.

Most DISC query languages

provide a limited syntax for operating on data collections

simple joins and group-bys

have limited support for nested collections and hierarchical data

cannot express complex data analysis tasks that need iteration

Example: Hive and DataFrames treat in-memory and distributed
collections differently

to flatten a nested collection in a row in Spark DataFrames, one must
‘explode’ the collection
Hive supports ‘lateral views’ to avoid creating intermediate tables when
exploding nested collections

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 4

Code Generation

Run-time code generation (SQL, Hive, Spark SQL, MRQL, . . .)

Run-time: checking, optimization, and code generation
Can embed values through parametric queries

Two-stage code generation (DryadLINQ, Emma)
Compile-time: checking and static optimizations

Generates a query graph

Run-time: cost-based optimizations and code generation
Embedding:

DryadLINQ broadcasts embedded values to workers
Emma uses Scala’s run-time reflection to access embedded values

Compile-time code generation (DIQL)

Compile-time: checking, static optimizations, and code generation
The optimizer can still do cost-based optimizations:

1 picks few viable choices for query plans at compile-time
2 generates conditional code that chooses a plan based on run-time

statistics

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 5

Wish List for Query Embedding

PL: host programming language, QL: DISC query language

No impedance mismatch:
a QL must be fully embedded into the host PL

The QL and PL data models must be equivalent

. . . but a QL must work on distributed collections with special
semantics

Distributed and in-memory collections must be indistinguishable in
the QL syntax

although they may be processed differently

No null values in the QL data model
SQL uses 3-valued logic (very obscure)
most PLs do not provide a standardized way to treat nulls
need to handle null values before UDF calls or PL code

⇒ no outer joins

nulls in data (unknown/missing values) can be handled with PL code

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 6

DIQL (Data-Intensive Query Language)

An SQL-like query language for DISC systems that

is deeply embedded in Scala

is optimized and translated to Java byte code at compile-time

is designed to support multiple Scala-based APIs for DISC processing

currently: Spark, Flink, and Twitter’s Cascading/Scalding

can uniformly work on both distributed and in-memory collections
using the same syntax

allows seamless mixing of native Scala code with SQL-like query
syntax

can use any Scala pattern, access any Scala variable, and embed any
functional Scala code
can use the core Scala libraries and tools, and user-defined classes

has compositional semantics based on monoid homomorphisms

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 7

The DIQL Syntax

pattern: p ::= any Scala pattern, including a refutable pattern

qualifier: q ::= p <− e generator over a dataset
| p <−− e generator over a small dataset
| p = e binding

expression: e ::= any Scala functional expression
| select [distinct] e

from q, . . . , q
[where e]
[group by p [: e] [having e]]
[order by e]

| ⊕/e aggregation

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 8

The Group-By Semantics

Based on comprehensions with ‘order by’ and ‘group by’
[Wadler and Peyton Jones 2007]

Pattern variables are essential to the group-by semantics

A group-by lifts each pattern variable defined in the from-clause from
some type t to a {{t}}

this {{t}} contains all the variable values associated with the same
group-by key

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 9

Example: Matrix Multiplication

A sparse matrix M is a bag of (v , i , j), for v = Mij

Matrix multiplication of X and Y =
∑

k Xik ∗ Ykj :

select (+/z, i, j)

from (x,i,k) <- X, (y,k_,j) <- Y, z = x*y

where k == k_

group by (i, j)

before the group-by: z = Xik ∗ Ykj

after group-by:

z is lifted to a bag of values Xik ∗ Ykj ;
for each group (i, j), the bag z contains Xik ∗ Ykj , for all k

+/z sums up all z values, for each group (i, j)

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 10

How can we Express Outer Joins in DIQL?

Outer semijoins can be simply expressed as nested queries
In SQL:

select c.name

from Customers c left outer join Orders o on o.cid = c.cid

group by c.cid

having o.price is null or c.account >= sum(o.price)

in DIQL:

select c.name from c <- Customers

where c.account >= +/(select o.price from o <- Orders

where o.cid == c.cid)

The DIQL query processor unnests any nested query to a coGroup

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 11

Full Outer Join: Matrix Addition

Matrix addition X + Y is equivalent to a full outer join:

select (+/(x++y), i, j)

from (x,i,j) <- X group by (i,j)

from (y,i_,j_) <- Y group by (i_,j_)

X is grouped by (i,j)

Y is grouped by (i_,j_)

with (i,j)==(i_,j_)

This is a coGroup!

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 12

Mixing SQL-like Syntax with Scala Code

A Scala class that represents a graph node:

case class Node (id : Long, adjacent : List [Long])

In Spark, a graph is a distributed collection of type RDD[Node].
Query: transform a graph so that each node is linked to the neighbors of
its neighbors:

q(”””
let graph = select Node(n, ns)

from line <− sc.textFile (”graph.txt”),
n :: ns = line . split (”,”). toList .map(.toLong)

in select Node(x, ++/ys)
from Node(x,xs) <− graph,

a <− xs,
Node(y,ys) <− graph

where y == a
group by x

”””)

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 13

Monoids as a Formal Basis for DISC Systems

The results of data-parallel computations must be independent of
the way we divide the data into partitions and
the way we combine the partial results to obtain the final result

⇒ data-parallel computations must be associative
They can be expressed as monoid homomorphisms

A monoid has an associative merge function and an identity
A collection monoid has also a unit function

(], {{ }}, λx .{{x}}) for bags

A monoid homomorphism maps a collection monoid to a monoid
Captures data parallelism

H(P1] P2] · · ·] Pn) = H(P1)⊕ H(P2)⊕ · · · ⊕ H(Pn)

Some monoid homomorphisms are not allowed
can’t convert a bag to a list

Collection monads (aka, ringads) have a monoidal structure too
but are not a good basis for practical data-centric languages
require various extensions (for group-by, aggregations, etc)

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 14

The Monoid Algebra

Generalizes the nested relational algebra (here shown on bags only)

flatMap of type (α→ {{β}}, {{α}})→ {{β}}

flatMap(λx . {{x + 1}}, {{1, 2, 3}}) = {{2, 3, 4}}

Monoid:]
groupBy of type {{(κ, α)}} → {{(κ, {{α}})}}

groupBy({{(1, a), (2, b), (1, c), (1, d)}}) = {{(1, {{a, c , d}}), (2, {{b}})}}

It returns an indexed set (aka, a key-value map).
Monoid: indexed set union (a full outer join that unions the groups of
matching keys)

orderBy of type {{(κ, α)}} → [(κ, {{α}})]
Monoid: merges sorted lists by unioning the groups of matching keys

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 15

The Monoid Algebra (cont.)

coGroup of type ({{(κ, α)}}, {{(κ, β)}}) → {{(κ, ({{α}}, {{β}}))}}

coGroup({{(1, a), (2, b), (1, c)}},
{{(1, 5), (2, 6), (3, 7)}})

= {{(1, ({{a, c}}, {{5}})), (2, ({{b}}, {{6}}), (3, ({{}}, {{7}})))}}

A lossless inner/outer equi-join.
Monoid: a full outer join that unions groups pairwise

reduce of type ((α, α)→ α, {{α}}) → α

reduce(+, {{1, 2, 3}}) = 6

Monoid: +

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 16

The Essence of Data Parallelism

Divide-and-conquer = groupBy-and-flatMap

Map-Reduce = flatMap-groupBy-flatMap

mapReduce(m, r)(X) = flatMap(r , groupBy(flatMap(m,X)))

for a map function m of type (k1, α)→ {{(k2, β)}}
and a reduce function r of type (k2, {{β}})→ {{(k3, γ)}}

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 17

Term Normalization

Fuse two cascaded flatMaps into a nested flatMap:

flatMap(f , flatMap(g , S))→ flatMap(λx .flatMap(f , g(x)),S)

Normal form: a tree of groupBy/coGroup nodes connected via a
single flatMap

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 18

Query Unnesting

Deriving joins and unnesting any nested query:

F (X ,Y) = flatMap(λx . g(flatMap(λy . h(x , y), Y)),X)

→ flatMap(λ(k , (xs, ys)).F (xs, ys),
coGroup(flatMap(λx . {{(k1(x), x)}}, X),

flatMap(λy . {{(k2(y), y)}}, Y)))

provided that there are key functions k1 and k2 such that
k1(x) 6= k2(y) ⇒ h(x , y) = {{ }}
eg, h(x , y) = if k1(x) == k2(y) then e else {{ }}

coGroups are implemented as distributed partitioned joins or
broadcast joins

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 19

Algebraic Terms

Our monoid algebraic operations are homomorphisms

... but flatMap over groupBy or coGroup may not be a
homomorphism

groupBy returns an indexed set
flatMap distributes over] but doesn’t distribute over indexed set union

Special case: if g is a homomorphism then so is this:

flatMap(λ(k, s). {{(k , g(s))}}, groupBy(X))

ie, flatMap must propagate the groupBy key

This is the basis for our incrementalization method

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 20

Incremental Stream Processing

Many emerging Distributed Stream Processing Engines (DSPEs)

Storm, Spark Streaming, Flink Streaming

Most are based on batch streaming

continuous processing over streams of batch data

(data that come in continuous large batches)

We want to:

convert any batch DISC query to an incremental stream processing
programs automatically

derive incremental programs that return accurate results, not
approximate answers — unlike most stream processing systems

retain a minimal state during streaming
derive an accurate snapshot answer periodically

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 21

Why Bother?

Incremental stream processing analyzes data in incremental fashion:

Existing results on current data are reused and merged with the
results of processing new data

Advantages:

it can achieve better performance and require less memory than batch
processing

it allows to process data streams in real-time with low latency

it can be used for analyzing very large data incrementally

in batches that can fit in memory;
enabling us to process more data with less hardware

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 22

Incrementalization using Homomorphisms

A query q(S1,S2) over two streams S1 and S2 is split into a
homomorphism h and an answer function a:

q(S1,S2) = a(h(S1,S2))

where h(S1]∆S1, S2]∆S2) = h(S1, S2)⊗ h(∆S1,∆S2),
for some monoid ⊗

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 23

Transforming an Algebraic Term to a Homomorphism

We transform each term to propagate the groupBy and coGroup keys
to the output

known as lineage tracking

lineage keys: the groupBy/coGroup keys in the query

Why?
the query results will be grouped by the lineage keys

the current state is kept grouped by the lineage keys
the query results on the new data are grouped by the lineage keys

the state is combined with the new query results by joining them on
the lineage keys using indexed set union

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 24

Incremental Processing

h(S1]∆S1,S2]∆S2) = h(S1,S2)⊗ h(∆S1,∆S2)

In most cases, the merging ⊗ is an indexed set union that joins the
current state h(S1,S2) with the new results h(∆S1,∆S2)

The state remains partitioned on the lineage keys

Only h(∆S1,∆S2) needs to be distributed across the workers based
on the lineage keys

We may store the state as a key-value map and update it in place

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 25

Current Work

MRQL: A querying system for Big data analytics

run-time code generation using Java reflection
implemented on Spark, Flink, Hama, and Storm

Incremental MRQL is implemented on Spark Streaming

DIQL: a DISC query system deeply embedded in Scala

compile-time code generation using Scala’s compile-time reflection and
macros
implemented on Spark, Flink, and Cascading/Scalding
provides a provenance-based debugger

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 26

Why not Monads?

Some DISC frameworks are based on collection monads (ringads)

ringad = monad + union + zero (a monoidal structure)

They require various extensions to become a good basis for practical
QLs:

join heterogeneous collections: need coercions (homomorphisms)
group-by a bag: need a group-by homomorphism
order-by: need a sorting homomorphism
aggregations: need monoid homomorphisms

There is a pattern here!

Need monoid homomorphisms, not monads!

ringads are less expressive than monoids
... but have more “structure” than necessary

Why don’t we just extend ringads with a fold?

bad idea; it may lead to false statements when applied to bags:
1 = first({{1,2}}) = first({{2,1}}) = 2 , first(S) = fold(λ(x,r). x) 0 S

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 27

Embedded External DSLs in Scala

Using existing Scala syntax (eg, for-comprehensions) to simulate DSL
syntax is not always a good solution

internal vs external DSL

Is there an easy way to extend the Scala syntax with custom DSL
syntax?

def parse (parser : => Parser[c.Tree]): Parser [c.Tree]

def scala : Parser [c.Tree] = parse(scala)

def expr : Parser [c.Tree]
= (” select ” ˜ expr ˜ ”from” ˜ ...
| parse(expr)
)

Parser for patterns?

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 28

