Compile-Time Code Generation for

Embedded Data-Intensive Query Languages

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/

http://lambda.uta.edu/

Emerging DISC (Data-Intensive Scalable Computing) systems
Introducing DIQL: the Data Intensive Query Language
The monoid algebra

Incremental query processing

L. Fegaras (UTA Compile-Time Code Generation for Embedded Data-Intensive Query Languages
g

DISC Programming Environments

@ Designed for large-scale data processing on computer clusters
@ Often work on raw data — indexes are uncommon
@ They hide the details of distributed computing, fault tolerance,
recovery, etc
@ Many provide functional-style APIs
e using powerful higher-order operations as building blocks
e preventing interference among parallel tasks
@ But some programmers are unfamiliar with functional programming
@ Hard to develop complex applications when the focus is in optimizing
performance
@ Too many competing DISC platforms:
Map-Reduce, Spark, Flink, Storm, ...
@ Hard to tell which one will prevail in the near future
@ ...or you can use a query language that is independent of the
underlying DISC platform!

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Limitations of Current DISC Query Languages

They are subsets of SQL.
But raw data is often nested, not normalized.

Most DISC query languages
@ provide a limited syntax for operating on data collections
simple joins and group-bys
@ have limited support for nested collections and hierarchical data

@ cannot express complex data analysis tasks that need iteration

@ Example: Hive and DataFrames treat in-memory and distributed
collections differently

e to flatten a nested collection in a row in Spark DataFrames, one must
‘explode’ the collection

e Hive supports ‘lateral views' to avoid creating intermediate tables when
exploding nested collections

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Code Generation

@ Run-time code generation (SQL, Hive, Spark SQL, MRQL, ...)
e Run-time: checking, optimization, and code generation
e Can embed values through parametric queries
e Two-stage code generation (DryadLINQ, Emma)
o Compile-time: checking and static optimizations
Generates a query graph

o Run-time: cost-based optimizations and code generation
o Embedding:
@ DryadLINQ broadcasts embedded values to workers
© Emma uses Scala’s run-time reflection to access embedded values

e Compile-time code generation (DIQL)
o Compile-time: checking, static optimizations, and code generation
e The optimizer can still do cost-based optimizations:

@ picks few viable choices for query plans at compile-time
@ generates conditional code that chooses a plan based on run-time
statistics

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Wish List for Query Embedding

PL: host programming language, QL: DISC query language

@ No impedance mismatch:
a QL must be fully embedded into the host PL

@ The QL and PL data models must be equivalent

@ ...but a QL must work on distributed collections with special
semantics

@ Distributed and in-memory collections must be indistinguishable in
the QL syntax

e although they may be processed differently
@ No null values in the QL data model

e SQL uses 3-valued logic (very obscure)
e most PLs do not provide a standardized way to treat nulls
e need to handle null values before UDF calls or PL code

@ = no outer joins

e nulls in data (unknown/missing values) can be handled with PL code

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

DIQL (Data-Intensive Query Language)

An SQL-like query language for DISC systems that
@ is deeply embedded in Scala

@ is optimized and translated to Java byte code at compile-time
@ is designed to support multiple Scala-based APIs for DISC processing
o currently: Spark, Flink, and Twitter's Cascading/Scalding

@ can uniformly work on both distributed and in-memory collections
using the same syntax
@ allows seamless mixing of native Scala code with SQL-like query
syntax
e can use any Scala pattern, access any Scala variable, and embed any

functional Scala code
e can use the core Scala libraries and tools, and user-defined classes

has compositional semantics based on monoid homomorphisms

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

The DIQL Syntax

pattern: p := any Scala pattern, including a refutable pattern
qualifier: ¢ 1= p<—e generator over a dataset
| p<— e generator over a small dataset
| p=e binding
expression: e = any Scala functional expression
| select [distinct] e
fromgqg, ..., g
[where €]

[group by p[: e] [having e]]
[order by e]
| @/e aggregation

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

The Group-By Semantics

@ Based on comprehensions with ‘order by' and ‘group by’
[Wadler and Peyton Jones 2007]
@ Pattern variables are essential to the group-by semantics
@ A group-by lifts each pattern variable defined in the from-clause from
some type t to a {t}
this {t} contains all the variable values associated with the same
group-by key

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Example: Matrix Multiplication

A sparse matrix M is a bag of (v,i,j), for v= M;;
Matrix multiplication of X and Y = 3", X * Yj;:

select (+/z, i, j)

from (x,i,k) <- X, (y,k_,j) <= Y, z = x*y
where k == k_

group by (i, j)

before the group-by: z = X * Yj;
after group-by:
z is lifted to a bag of values Xy * Yi;
for each group (i, j), the bag z contains Xj * Yj;, for all k

@ +/z sums up all z values, for each group (i, j)

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 10

How can we Express Outer Joins in DIQL?

Outer semijoins can be simply expressed as nested queries

In SQL:

select c.name
from Customers c left outer join Orders o on o.cid = c.cid

group by c.cid
having o.price is null or c.account >= sum(o.price)

in DIQL:

select c.name from c <- Customers
where c.account >= +/(select o.price from o <- Orders
where o.cid == c.cid)

The DIQL query processor unnests any nested query to a coGroup

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Full Outer Join: Matrix Addition

Matrix addition X 4 Y is equivalent to a full outer join:

select (+/(x++y), i, j)
from (x,i,j) <- X group by (i,j)
from (y,i_,j_) <- Y group by (i_,j_)

@ X is grouped by (i,j)
@ Y is grouped by (i_,j_)
e with (i,j)==(i_,j_)

This is a coGroup!

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Mixing SQL-like Syntax with Scala Code

A Scala class that represents a graph node:
case class Node (id: Long, adjacent: List [Long])

In Spark, a graph is a distributed collection of type RDD[Node].

Query: transform a graph so that each node is linked to the neighbors of
its neighbors:

q("""
let graph = select Node(n, ns)
from line <— sc.textFile("graph.txt"),
n:ns = line. split (","”). toList .map(_.toLong)
in select Node(x, ++/ys)
from Node(x,xs) <— graph,
a <— xs,
Node(y,ys) <— graph
wherey == a
group by x

")

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Monoids as a Formal Basis for DISC Systems

@ The results of data-parallel computations must be independent of
e the way we divide the data into partitions and
e the way we combine the partial results to obtain the final result
= data-parallel computations must be associative
@ They can be expressed as monoid homomorphisms
e A monoid has an associative merge function and an identity
e A collection monoid has also a unit function
(W, {}, Ax.{x}) for bags
A monoid homomorphism maps a collection monoid to a monoid
Captures data parallelism

HPLW Py P,) =H(P1)® H(P)®---@® H(Py)

Some monoid homomorphisms are not allowed
can’t convert a bag to a list

e Collection monads (aka, ringads) have a monoidal structure too
e but are not a good basis for practical data-centric languages
e require various extensions (for group-by, aggregations, etc)

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 14

The Monoid Algebra

Generalizes the nested relational algebra (here shown on bags only)
e flatMap of type (o — {5}, {a}) — {8}

fatMap(Ax. {x + 1}, {1,2,3}) = {2,3,4}

Monoid: W
o groupBy of type {(x,a)} — {(x, {a})}

groupBy({(l,a),(2, b),(l,C),(Ld)}) = {(17{37 < d})a(27{b})}

It returns an indexed set (aka, a key-value map).
Monoid: indexed set union (a full outer join that unions the groups of
matching keys)
e orderBy of type {(k,)} — [(r, {a})]
Monoid: merges sorted lists by unioning the groups of matching keys

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

The Monoid Algebra (cont.)

@ coGroup of type ({(r; @)}, {(x,58)}) = {(r, ({a},{5}))}

coGroup({(1, a), (2, b), (1, ¢)},
{(1,5),(2,6),(3,7)})
= {(1,({a; c}, {5})). (2, ({b},{6}), 3, ({}. {7TH))}

A lossless inner/outer equi-join.
Monoid: a full outer join that unions groups pairwise

e reduce of type ((o,) — «, {a}) = «
reduce(+,{1,2,3}) =6

Monoid: +

Compile-Time Code Generation for Embedded Data-Intensive Query Languages

The Essence of Data Parallelism

@ Divide-and-conquer = groupBy-and-flatMap
@ Map-Reduce = flatMap-groupBy-flatMap

mapReduce(m, r)(X) = flatMap(r, groupBy(flatMap(m, X)))

for a map function m of type (ki,) — {(ko,)}
and a reduce function r of type (ka2, {8}) — {(k3,7)}

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 17

Term Normalization

@ Fuse two cascaded flatMaps into a nested flatMap:

flatMap(f, flatMap(g, S)) — flatMap(Ax. flatMap(f, g(x)), S)

e Normal form: a tree of groupBy/coGroup nodes connected via a
single flatMap

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 18

Query Unnesting

@ Deriving joins and unnesting any nested query:

F(X,Y) = ﬂatMap()\x.g(‘ﬂatMap()\y. h(x,y), Y)|),X

~—

— flatMap(A(k, (xs, ys)). F(xs, ys),
coGroup(flatMap(Ax. {(ki(x), x)}, X),
flatMap(Ay. {(k2(y),)}, Y)))

provided that there are key functions k1 and k> such that
ki(x) # ko(y) = h(x,y) ={}
eg, h(x,y) = if ki(x) == ko(y) then e else { }

@ coGroups are implemented as distributed partitioned joins or
broadcast joins

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 19

Algebraic Terms

@ Our monoid algebraic operations are homomorphisms

@ ... but flatMap over groupBy or coGroup may not be a
homomorphism

e groupBy returns an indexed set
o flatMap distributes over W but doesn’t distribute over indexed set union

@ Special case: if g is a homomorphism then so is this:

flatMap(A(k, s). {(k, g(s))}, groupBy(X))

ie, flatMap must propagate the groupBy key

@ This is the basis for our incrementalization method

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 20

Incremental Stream Processing

Many emerging Distributed Stream Processing Engines (DSPEs)
Storm, Spark Streaming, Flink Streaming
Most are based on batch streaming
@ continuous processing over streams of batch data
(data that come in continuous large batches)
We want to:

@ convert any batch DISC query to an incremental stream processing
programs automatically

@ derive incremental programs that return accurate results, not
approximate answers ~ — unlike most stream processing systems

e retain a minimal state during streaming
e derive an accurate snapshot answer periodically

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 21

Incremental stream processing analyzes data in incremental fashion:

Existing results on current data are reused and merged with the
results of processing new data

Advantages:
@ it can achieve better performance and require less memory than batch
processing
@ it allows to process data streams in real-time with low latency
@ it can be used for analyzing very large data incrementally

in batches that can fit in memory;
enabling us to process more data with less hardware

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 22

Incrementalization using Homomorphisms

ASl ASI Stream 1
Asz Asz Stream 2

A query q(51,S2) over two streams S; and S is split into a
homomorphism h and an answer function a:

q(51, 52) = a(h(S1, 52))

where h(51 WAS, S W A52) = h(Sl, 52) & h(ASl, ASQ),
for some monoid ®

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 23

Transforming an Algebraic Term to a Homomorphism

@ We transform each term to propagate the groupBy and coGroup keys
to the output
known as lineage tracking

@ lineage keys: the groupBy/coGroup keys in the query
o Why?
o the query results will be grouped by the lineage keys

o the current state is kept grouped by the lineage keys
@ the query results on the new data are grouped by the lineage keys

o the state is combined with the new query results by joining them on
the lineage keys using indexed set union

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 24

Incremental Processing

t t+At t+2At
ASI ASI Stream 1
A52 ASZ Stream 2

h(S1WAS;, S WAS) = h(S1,5) @ h(AS,AS,)
@ In most cases, the merging ® is an indexed set union that joins the
current state h(Si1, S2) with the new results h(AS;, AS»)
@ The state remains partitioned on the lineage keys
@ Only h(AS;,ASy) needs to be distributed across the workers based
on the lineage keys
@ We may store the state as a key-value map and update it in place

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

e MRQL: A querying system for Big data analytics

e run-time code generation using Java reflection

e implemented on Spark, Flink, Hama, and Storm
@ Incremental MRQL is implemented on Spark Streaming
e DIQL: a DISC query system deeply embedded in Scala

e compile-time code generation using Scala’s compile-time reflection and
macros

o implemented on Spark, Flink, and Cascading/Scalding

e provides a provenance-based debugger

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Why not Monads?

e Some DISC frameworks are based on collection monads (ringads)
ringad = monad + union + zero (a monoidal structure)
@ They require various extensions to become a good basis for practical

QLs:

join heterogeneous collections: need coercions (homomorphisms)
group-by a bag: need a group-by homomorphism

order-by: need a sorting homomorphism

aggregations: need monoid homomorphisms

@ There is a pattern here!
@ Need monoid homomorphisms, not monads!

ringads are less expressive than monoids
... but have more “structure” than necessary

@ Why don’t we just extend ringads with a fold?

bad idea; it may lead to false statements when applied to bags:
1 = first({1,2}) = first({2,1}) = 2 , first(S) = fold(A\(x,r).x) 0 S

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages

Embedded External DSLs in Scala

@ Using existing Scala syntax (eg, for-comprehensions) to simulate DSL
syntax is not always a good solution

internal vs external DSL
@ Is there an easy way to extend the Scala syntax with custom DSL
syntax?
def parse (parser: => Parser[c.Tree]): Parser|[c.Tree]
def scala: Parser[c.Tree] = parse(scala)
def expr: Parser[c.Tree]
= (" select” " expr ~ "from” ~

| parse(expr)

)

o Parser for patterns?

L. Fegaras (UTA) Compile-Time Code Generation for Embedded Data-Intensive Query Languages 28

