Incremental Stream Processing

of Nested-Relational Queries

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/

http://lambda.uta.edu/

We want to

@ convert nested-relational queries to incremental stream processing
programs automatically

@ derive incremental programs that return accurate results, not
approximate answers ~ — unlike most stream processing systems

e retain a minimal state during streaming
o derive an accurate snapshot answer periodically

@ focus on distributed stream processing engines on Big Data streams

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries

MRQL: A Query Language for Big Data Analytics

A powerful and efficient query processing system for complex data
analysis on Big Data

More powerful than existing query languages

o a richer data model (nested collections, trees, ...)
e arbitrary query nesting

e more powerful query constructs

user-defined types and functions

Able to capture most complex data analysis tasks declaratively
Focus on raw, read-only, complex data (eg, XML, JSON)

Platform-independent

A common front-end for the multitude of distributed processing
frameworks emerging in the Hadoop ecosystem

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 3

MRQL Streaming and Incremental MRQL

data analysis queries

(in MRQL) Incremental MRQL
MRQL MRQL Streaming
MapReduce | Spark | Flink | Hama | spark streaming (plsat::gd) F"”(';Isatrﬁ:(’r)ing

YARN (Cluster Resource Management)

HDFS (Hadoop Distributed File System)

e Many emerging Distributed Stream Processing Engines (DSPEs)
Storm, Spark Streaming, Flink Streaming
@ Most are based on batch streaming
e continuous processing over streams of batch data
(data that come in continuous large batches)
@ Incremental MRQL: translates any batch query to an incremental
DSPE program automatically

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 4

Why Bother?

Incremental stream processing analyzes data in incremental fashion:

Existing results on current data are reused and merged with the
results of processing new data

Advantages:

@ it can achieve better performance and may require less memory than
batch processing

@ it allows to process data streams in real-time with low latency

@ it can be used for analyzing very large data incrementally

in batches that can fit in memory
enabling us to process more data with less hardware

@ it can be used for incremental view maintenance in RDBs

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 5

Highlights of our Approach

t t+At t+2At
ASl Asl Stream 1
Asz Asz Stream 2

An MRQL query q(51,S2) over two streams S; and S, is split into a
homomorphism h and an answer function a:

q(51, 52) = a(h(S1, 52))

where h(51 WAS, S W A52) = h(Sl, 52) & h(ASl, ASQ),
for some monoid ®

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 6

An MRQL query:

select (x, avg(z))
from (x,y) in 51, (y,z) in S,
group by x

The homomorphism:

select ((x,y), (sum(z), count(z)))
from (x,y) in S1, (y,z) in S
group by (x,y)

groups the results by the lineage x (the group-by key) and y (the join key)

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 7

Example (cont.)

The merge function @ is a full outer join I<t:

select (k, (s1+s2,c1+c2))
from (k,(s1,c1)) in X,
(k,(s2,c2)) inY
union select (k, (s2,c2)) from (k,(s2,c2)) in Y
where k not in 7 (X)
union select (k,(s1,c1)) from (k,(s1,cl)) in X
where k not in m(Y)

The answer function:

select (x, sum(s)/sum(c))
from ((x,y),(s,c)) in State
group by x

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 8

The MRQL Algebra

Far more effective than the nested relational algebra

o cMap(f,S): {8}, for f:a— {8} and S: {a}
cMap(Ax. {x + 1}, {1,2,3}) = {2,3,4}
o groupBy(S) : {(x,{a})}, for S:{(k,a)}
groupBy({(1,10), (2,20), (1,30), (1,40)}) = {(1,{10,30,40}), (2, {20})}
e coGroup(R, S) : {(x, ({a}, {B}))}, for R: {(k,@)} and S : {(k, B)}

coGroup({(1, 10), (2,20),(1,30)},{(1,5),(2,6),(3,7)})
= {(1,({10,30},{5})). (2, ({20}, {6}), (3, ({}. {7})))}

o reduce(®,S):a, for S:{a}and ®:(a,a) =«

reduce(+, {1,2,3}) =6

Incremental Stream Processing of Nested-Relational Queries

Term Normalization

@ Fuse two cascaded cMaps into a nested cMap:
cMap(f,cMap(g, S)) — cMap(Ax. cMap(f, g(x)), S)

@ Unnesting any nested query:

F(X,Y) = |cMap(Ax.g(|cMap(Ay.h(x,y), Y)|),X)

— cMap(X\(k, (xs,ys)). F(xs, ys),
coGroup(cMap(Ax. {(ki(x),x)}, X),
cMap(Ay- {(k2(y): ¥)}: Y)))

provided that ki(x) # ko(y) implies h(x,y) = {}
e Normal form: a tree of groupBy/coGroup nodes connected with cMap

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 10

Algebraic Terms

@ Our algebraic operations are homomorphisms
e groups from a groupBy/coGroup are merged with a full outer join It

groupBy(X W Y) = groupBy(X) <t groupBy(Y)

@ ... but cMap over groupBy or coGroup may not be a homomorphism
e cMap distributes over W but doesn't distribute over 1<t

@ Special case: if g is a homomorphism then this is too:

cMap(A(k, s). {(k,&(s))}, groupBy(X))

ie, when cMap propagates the groupBy key
@ We are exploiting this property to the fullest

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 11

Transforming an Algebraic Term to a Homomorphism

@ We transform each term to propagate the groupBy and coGroup keys
to the output
known as lineage tracking

@ lineage keys: the groupBy/coGroup keys in the query
o Why?
o the query results are grouped by the lineage keys

o the current state is kept grouped by the lineage keys
@ the query results on the new data are grouped by the lineage keys

o the state is combined with the new query results by joining them on
the lineage keys using <t

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 12

Lineage Tracking

@ The lineage tree # has the same shape as the tree of groupBy and
coGroup operations in the term

o A lineage law transforms a term e of type {t} to a term [¢e] of type
{(0,t)}. Example:

[cMap(f, groupBy(e))]
= {((k,0), w) [((k,0),s) € groupBy(flip([e])), w € f(k,s)}

where flip maps {((k,v),0)} to {((k,0),v)}.
It extends the lineage 8 of e with the groupBy key k

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 13

Transforming Terms to Homomorphisms

@ What if a cMap term is not a homomorphism?
@ split the cMap into two cMaps: one homomorphic and one not
@ pull out and fuse all non-homomorphic cMaps at the root of the
algebraic tree
e For a term cMap(Av. e, X):
© find the largest subterms ey, ..., e, in the algebraic term e that are
homomorphisms
@ replace these terms with new variables:

cMap(A(v, vi, ..., Vp). f(v1,...,vn), cMap(Av.{(v,e1,...,en)}, X))

@ All non-homomorphic parts from the cMap functionals are pulled
outwards and combined, deriving two terms:
e a homomorphism: performs the incremental computation
e an answer function: removes the lineage, combines the lineage groups,
and returns the query answer

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 14

Incremental Processing on Two Streams (revisited)

t t+At t+2At
ASl Asl Stream 1
Asz Asz Stream 2

h(51 WAS, S W A52) = h(Sl, 52) ® h(ASl, ASQ)

@ The merging ® is often an outer join I<T that joins the curent state
h(S1, S2) with the new results h(AS1, AS»)

@ The state remains partitioned on the lineage keys

@ Only h(AS;, ASy) needs to be distributed across workers based on
the lineage keys

@ The new state doesn’t need to be repartitioned

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 15

Implementation and Current Work

@ Incremental MRQL is implemented on Spark Streaming

@ Tested on various SQL-like queries
e an order of magnitude speed-up compared to batch processing that
processes all the data
@ Currently, we are working on iterative queries, such as PageRank and
clustering
e this time, we calculate approximate answers

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 16

rmance Evaluation

‘©10%

Incremental/b:
3
>

eonidas Fegaras (UTA)

14%
"M 1K tuples mmm— N " [100K+n*10k tuples. s |
r TM+n*2K tuples = T £12% | 100K+n*20k tuples mmmmm E
L 1M+n*3K tuples mm— 4 = 100K+n*30K tuples
1M+n*4K tuples mm— S10% | 100K+n*40k tuples e g
B 1 <
L 4 S 8% 1
2
r 1 S 6% [b
f=4
L - 5
| | E 4% 1
S
L i £ 2% 1
0o 1 2 3 4 5 6 7 8 9 0 1 2 383 4 5 6 7 8 9

A. GroupBy (n = time interval 1..9)

2 70%
=60%
5
S50%
<
L
g 40%
£30%
Q
£20%

210%

B. Join-GroupBy (n = time interval 1..9)

0

100K+n*10K tuples
100K+n*20k tuples
100K+n*30k tuples
100K+n*40K tuples

1 2 3 4 5 6 7 8 9
C. Pagerank (n =time interval 1..9)

Incremental Stream Processing of Nested-Relational Queries

17

