
Incremental Stream Processing
of Nested-Relational Queries

Leonidas Fegaras

University of Texas at Arlington

http://lambda.uta.edu/

http://lambda.uta.edu/

Goals

We want to

convert nested-relational queries to incremental stream processing
programs automatically

derive incremental programs that return accurate results, not
approximate answers — unlike most stream processing systems

retain a minimal state during streaming
derive an accurate snapshot answer periodically

focus on distributed stream processing engines on Big Data streams

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 2

MRQL: A Query Language for Big Data Analytics

A powerful and efficient query processing system for complex data
analysis on Big Data

More powerful than existing query languages

a richer data model (nested collections, trees, ...)
arbitrary query nesting
more powerful query constructs
user-defined types and functions

Able to capture most complex data analysis tasks declaratively

Focus on raw, read-only, complex data (eg, XML, JSON)

Platform-independent

A common front-end for the multitude of distributed processing
frameworks emerging in the Hadoop ecosystem

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 3

MRQL Streaming and Incremental MRQL

Many emerging Distributed Stream Processing Engines (DSPEs)
Storm, Spark Streaming, Flink Streaming

Most are based on batch streaming
continuous processing over streams of batch data
(data that come in continuous large batches)

Incremental MRQL: translates any batch query to an incremental
DSPE program automatically

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 4

Why Bother?

Incremental stream processing analyzes data in incremental fashion:

Existing results on current data are reused and merged with the
results of processing new data

Advantages:

it can achieve better performance and may require less memory than
batch processing

it allows to process data streams in real-time with low latency

it can be used for analyzing very large data incrementally

in batches that can fit in memory
enabling us to process more data with less hardware

it can be used for incremental view maintenance in RDBs

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 5

Highlights of our Approach

An MRQL query q(S1, S2) over two streams S1 and S2 is split into a
homomorphism h and an answer function a:

q(S1, S2) = a(h(S1,S2))

where h(S1]∆S1, S2]∆S2) = h(S1, S2)⊗ h(∆S1,∆S2),
for some monoid ⊗

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 6

Example

An MRQL query:

select (x, avg(z))
from (x,y) in S1, (y,z) in S2
group by x

The homomorphism:

select ((x,y), (sum(z), count(z)))
from (x,y) in S1, (y,z) in S2
group by (x,y)

groups the results by the lineage x (the group-by key) and y (the join key)

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 7

Example (cont.)

The merge function ⊕ is a full outer join ./ :

select (k,(s1+s2,c1+c2))

from (k,(s1,c1)) in X,

(k,(s2,c2)) in Y

union select (k,(s2,c2)) from (k,(s2,c2)) in Y

where k not in π1(X)
union select (k,(s1,c1)) from (k,(s1,c1)) in X

where k not in π1(Y)

The answer function:

select (x, sum(s)/sum(c))

from ((x,y),(s,c)) in State

group by x

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 8

The MRQL Algebra

Far more effective than the nested relational algebra

cMap(f ,S): {β}, for f : α→ {β} and S : {α}

cMap(λx . {x + 1}, {1, 2, 3}) = {2, 3, 4}

groupBy(S) : {(κ, {α})}, for S : {(κ, α)}

groupBy({(1, 10), (2, 20), (1, 30), (1, 40)}) = {(1, {10, 30, 40}), (2, {20})}

coGroup(R, S) : {(κ, ({α}, {β}))}, for R : {(κ, α)} and S : {(κ, β)}

coGroup({(1, 10), (2, 20), (1, 30)}, {(1, 5), (2, 6), (3, 7)})
= {(1, ({10, 30}, {5})), (2, ({20}, {6}), (3, ({}, {7})))}

reduce(⊕,S) : α, for S : {α} and ⊕ : (α, α)→ α

reduce(+, {1, 2, 3}) = 6

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 9

Term Normalization

Fuse two cascaded cMaps into a nested cMap:

cMap(f , cMap(g , S))→ cMap(λx . cMap(f , g(x)), S)

Unnesting any nested query:

F (X ,Y) = cMap(λx . g(cMap(λy . h(x , y), Y)),X)

→ cMap(λ(k , (xs, ys)).F (xs, ys),
coGroup(cMap(λx . {(k1(x), x)}, X),

cMap(λy . {(k2(y), y)}, Y)))

provided that k1(x) 6= k2(y) implies h(x , y) = {}
Normal form: a tree of groupBy/coGroup nodes connected with cMap

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 10

Algebraic Terms

Our algebraic operations are homomorphisms

groups from a groupBy/coGroup are merged with a full outer join ./

groupBy(X] Y) = groupBy(X) ./ groupBy(Y)

... but cMap over groupBy or coGroup may not be a homomorphism

cMap distributes over] but doesn’t distribute over ./

Special case: if g is a homomorphism then this is too:

cMap(λ(k , s). {(k, g(s))}, groupBy(X))

ie, when cMap propagates the groupBy key

We are exploiting this property to the fullest

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 11

Transforming an Algebraic Term to a Homomorphism

We transform each term to propagate the groupBy and coGroup keys
to the output

known as lineage tracking

lineage keys: the groupBy/coGroup keys in the query

Why?
the query results are grouped by the lineage keys

the current state is kept grouped by the lineage keys
the query results on the new data are grouped by the lineage keys

the state is combined with the new query results by joining them on
the lineage keys using ./

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 12

Lineage Tracking

The lineage tree θ has the same shape as the tree of groupBy and
coGroup operations in the term

A lineage law transforms a term e of type {t} to a term [[e]] of type
{(θ, t)}. Example:

[[cMap(f , groupBy(e))]]
→ { ((k, θ),w) | ((k , θ), s) ∈ groupBy(flip([[e]])), w ∈ f (k , s) }

where flip maps {((k , v), θ)} to {((k , θ), v)}.
It extends the lineage θ of e with the groupBy key k

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 13

Transforming Terms to Homomorphisms

What if a cMap term is not a homomorphism?
1 split the cMap into two cMaps: one homomorphic and one not
2 pull out and fuse all non-homomorphic cMaps at the root of the

algebraic tree

For a term cMap(λv . e, X):
1 find the largest subterms e1, . . . , en in the algebraic term e that are

homomorphisms
2 replace these terms with new variables:

cMap(λ(v , v1, . . . , vn). f (v1, . . . , vn), cMap(λv . {(v , e1, . . . , en)}, X))

All non-homomorphic parts from the cMap functionals are pulled
outwards and combined, deriving two terms:

a homomorphism: performs the incremental computation
an answer function: removes the lineage, combines the lineage groups,
and returns the query answer

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 14

Incremental Processing on Two Streams (revisited)

h(S1]∆S1,S2]∆S2) = h(S1, S2)⊗ h(∆S1,∆S2)

The merging ⊗ is often an outer join ./ that joins the curent state
h(S1,S2) with the new results h(∆S1,∆S2)
The state remains partitioned on the lineage keys
Only h(∆S1,∆S2) needs to be distributed across workers based on
the lineage keys
The new state doesn’t need to be repartitioned

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 15

Implementation and Current Work

Incremental MRQL is implemented on Spark Streaming

Tested on various SQL-like queries

an order of magnitude speed-up compared to batch processing that
processes all the data

Currently, we are working on iterative queries, such as PageRank and
clustering

this time, we calculate approximate answers

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 16

Performance Evaluation

2%

4%

6%

8%

10%

12%

14%

16%

18%

 0 1 2 3 4 5 6 7 8 9

In
c
re

m
e
n
ta

l/
b
a
tc

h
 r

u
n
 t
im

e

A. GroupBy (n = time interval 1..9)

1M+n*1K tuples
1M+n*2K tuples
1M+n*3K tuples
1M+n*4K tuples

2%

4%

6%

8%

10%

12%

14%

 0 1 2 3 4 5 6 7 8 9

In
c
re

m
e
n
ta

l/
b
a
tc

h
 r

u
n
 t
im

e

B. Join-GroupBy (n = time interval 1..9)

100K+n*10k tuples
100K+n*20k tuples
100K+n*30k tuples
100K+n*40k tuples

10%

20%

30%

40%

50%

60%

70%

 0 1 2 3 4 5 6 7 8 9

In
c
re

m
e
n
ta

l/
b
a
tc

h
 r

u
n
 t
im

e

C. Pagerank (n = time interval 1..9)

100K+n*10k tuples
100K+n*20k tuples
100K+n*30k tuples
100K+n*40k tuples

Leonidas Fegaras (UTA) Incremental Stream Processing of Nested-Relational Queries 17

