Revisiting Catamorphisms over Datatypes with Embedded Functions
(or, Programs from Outer Space)

Leonidas Fegaras

Tim Sheard

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
20000 N.W. Walker Road P.O. Box 91000
Portland, OR 97291-1000

{fegaras,sheard }@cse.ogi.edu

Abstract

We revisit the work of Paterson and of Meijer & Hutton,
which describes how to construct catamorphisms for recur-
sive datatype definitions that embed contravariant occur-
rences of the type being defined. Their construction re-
quires, for each catamorphism, the definition of an anamor-
phism that has an inverse-like relationship to that cata-
morphism. We present an alternative construction, which
replaces the stringent requirement that an inverse anamor-
phism be defined for each catamorphism with a more lenient
restriction. The resulting construction has a more efficient
implementation than that of Paterson, Meijer, and Hutton
and the relevant restriction can be enforced by a Hindley-
Milner type inference algorithm. We provide numerous ex-
amples illustrating our method.

1 Introduction

Functional programmers often use catamorphisms (or fold
functions) as an elegant means of expressing algorithms over
algebraic datatypes. Catamorphisms have also been used
by functional programmers as a medium in which programs
can be calculated from specifications [7, 6, 5] and as a good
intermediate representation of programs that supports op-
timization [14, 3, 4, 1]. Tt is, thus, truly ironic that these
functions apply only to first order datatypes.

Until recently, it was not known how to express catamor-
phisms for datatypes with embedded function types. The
work by Paterson [10] and Meijer & Hutton [8] finally pro-
vided a method for doing so. While elegant and theoretically
sound, their solution suffers from the disadvantage of being
somewhat inefficient. This paper extends their technique us-
ing a simple trick that results to more efficient programs and
turns out to also have several other interesting applications.

Meijer and Hutton point out that in order to express a
function f as a catamorphism over an arbitrary datatype
it 1s necessary to express another function g as an anamor-
phism (or unfold function) which is defined mutually recur-

To appear at the 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, St.
Petersburg Beach, Florida, January 1996. Also avail-
able as OGI Technical Report 95/014.

sively with the catamorphism. The anamorphism is nec-
essary if a recursive datatype definition has contravariant
occurrences of the type being defined. The purpose of the
anamorphism is to “undo” what the catamorphism “does”.
The “inverse-like” relationship of f and g is necessary to
correctly handle the contravariance of the datatype defini-
tion. This approach requires a proof of the inverse-like re-
lationship between f and g. In general there is no known
automatic way to obtain such a proof.

Our trick involves inventing a particularly simple inverse-
like function to take the place of the anamorphism. This
method is simple, not only because it does not require an
actual definition of the inverse-like function g, but also be-
cause it gives g a highly efficient implementation. The trick
does not always apply, but we present a type system that
determines statically when it is applicable.

In this paper we give numerous examples illustrating
the usefulness of being able to define catamorphisms over
datatypes with embedded functions, as well as showing how
to define functions as catamorphisms.

2 Structures with Functionals are Useful

In this section, we present several examples of data struc-
tures with embedded functions. We define catamorphisms
over these structures and give many examples of their use.
We informally introduce our method and explain how it
works. Our first example is an evaluation function over a
datatype that represents closed terms in a simple lambda
calculus. This representation is interesting because the eval-
uation function does not need an environment mapping vari-
ables to values. The second example is the expression of the
parametricity theorem for any polymorphic function. The
third example is the expression and manipulation of circular
lists in a functional language, and the last example is the
expression and manipulation of graphs. All the functions
in these examples can be expressed succinctly as catamor-
phisms.

2.1 Meta-programming
Lambda Calculus

Our first example of a function over a data structure with
embedded functions is an evaluation function for a datatype

2.1.1

that represents closed terms in a simple lambda calculus.
We represent terms as structures with embedded functions
in a manner similar to the higher-order abstract syntax rep-
resentation of programs by Pfenning and Elliot [12] (all our
examples are written in Standard ML (SML) [11]):

datatype Term = Const of int| Succ | Appl of Term x Term
| Abs of Term — Term

For example, the lambda term (Az.1+)1 is represented
by the Term construction

Appl(Abs(fn x = Appl(Succ,x)),Const 1)

This term representation can be traced back to Church’s
seminal work on the lambda calculus [2], in which universal
quantification Vz.A is modeled by the addition of a con-
stant IT and by writing II(Az.A). This representation is also
similar to the higher-order abstract syntax representation of
programs, formulas, and rules by Pfenning and Elliot [12],
and is also related to the work of Nadathur and Miller [9]
on higher-order logic programming.

The datatype definition for Term differs from most in
that in most lambda term representations, lambda abstrac-
tions are constructed by value constructors of type variable x
Term — Term, and most representations also include con-
structors like Var of type variable — Term. In such repre-
sentations, an operation over lambda terms needs to handle
variables explicitly. For example, a lambda-calculus evalua-
tor typically needs to build and manipulate an environment
to bind variables to values. In our representation the ab-
straction mechanism of the meta-language (SML) is used
to represent abstraction in the object language of lambda
terms and this completely finesses the bound-variable nam-
ing problem.

Our evaluator is thus spared the difficulties and complex-
ity associated with the explicit representation of variables,
since all the necessary variable plumbing, in beta reduction,
etc., is handled implicitly by the evaluation engine of SML
in which our evaluator is expressed. But the benefit of our
approach is more than just pedagogical: one can experiment
with various types of evaluators without worrying about the
details of names and variable binding. Representations like
this have been avoided because of the difficulty of expressing
certain kinds of computations.

The Paterson/Meijer/Hutton Approach

We now present an evaluator for terms in the style of Pa-
terson [10], and Meijer & Hutton [8]. We use explicit recur-
sion instead of catamorphisms to make it clear how it works
and to illustrate the inefficiencies of this approach. Our ap-
proach, which improves this method, is described in detail
in the next subsection.

The value domain of our evaluator is

datatype Value = Num of int | Fun of Value — Value

The value domain itself uses embedded functions to rep-
resent the meaning of functional terms in the lambda cal-
culus. The lambda term evaluator is a function of type
Term — Value and could be expressed as:

fun eval(Const n) = Numn

| eval(Succ) = Fun(fn Num n = Num(n+1))

| eval(Appl(f.e)) = (case eval(f) of Fun(g) = g(eval(e)))
| eval(Abs f) = Fun(g?)

But it i1s not obvious what g? in the last clause should be.
The type of g? should be Value — Value. The function f
of type Term — Term must somehow be manipulated into a
value of type Value — Value. Based on type considerations
alone, one might attempt to construct g? as a composition of
f with a function of type Term — Value on the left and a func-
tion of type Value— Term on the right. The obvious choice
for the first function is eval. The second function, which we
call reify, translates values into terms. The function reify
should be the right inverse of eval on the range of eval, i.e.,
for all z in the range of eval the identity eval(reify(z)) = «
should hold. Without this restriction, eval would fail to eval-
uate even the simplest abstraction, namely Abs(fn x = x),
into the correct result Fun(fn x = x). Since term evaluation
is not an isomorphism in general, we have many different
choices for reify. As a first pass at a definition of reify, we
might reasonably try:

Num n

Fun(fn Num n = Num(n+1))

(case eval(f) of Fun(g) = g(eval(e)))
Fun(eval o f o reify)

fun eval(Const n)
| eval(Succ)

| eval(Appl(f,e))
| eval(Abs f)

and reify(Num n) = Constn
| reify(Fun f) = Abs(reify o f o eval)

Notice the symmetry between eval and reify. In particular,
the way reify handles the embedded function inside Fun is the
mirror image of the way eval handles the embedded function
inside Abs.

It is instructive to visualize the process that occurs when
an Abs term is evaluated. An abstraction is built that will
be placed within a Fun constructor. This abstraction, when
applied, will reify its argument to get a Term, then apply f
to get another Term, and finally evaluate this term to get a
Value. For example, the evaluation of the term (Az.z+1) 1
proceeds as follows:

eval(Appl(Abs(fn x = Appl(Succ,x)),Const 1))

= case eval(Abs(fn x = Appl(Succ,x))) of
Fun(g) = g(eval(Const 1))

= case Fun(fn x = eval(Appl(Succ,reify x))) of
Fun(g) = g(eval(Const 1))

The abstraction in the case is eventually applied to a term,
which must itself be evaluated. The above thus equals

eval(Appl(Succ,reify(eval(Const 1))))

eval(Appl(Succ,reify(Num 1)))

eval(Appl(Succ,Const 1))

case Fun(fn Num n = Num(n+1)) of
Fun(g) = g(eval(Const 1))

(fn Num n = Num(n+1)) (Num 1)

Num 2

We can see that there is some computational redundancy
in the evaluator. Some terms, such as Const 1, are evalu-
ated only to be reified later on. In general, if we reduce
Appl(Abs(f).e), where e is a complex term, then we get
eval(f(reify(eval(e)))). That is, the term e is evaluated into
a value, and then this is reified into a term, then this term
(after reduction by f) is evaluated again into a value by the
outer occurrence of eval. This is the general scheme within
the eval-reify example: reify will undo what eval has done,
eval will partially redo what has been undone, and so on.
This problem becomes increasingly worse with the complex-
ity of function f. For example, to define a printer print for
Term, which is a function from Term to string, it is neces-
sary to define a parser parse from string to Term with the

property print(parse(x))=x. The computational complexity
of the parser is linear in the size of the input string. But,
as we will see next, in many cases, an approximate right
inverse of print with constant time complexity is all that is
needed.

These dual mutually recursive definitions have been ex-
plored by Paterson [10] and Meijer & Hutton [8]. They use
a pair of generic dual functions, catamorphism and anamor-
phism, to capture recursion schemes similar to the one in
the eval-reify example: a catamorphism will reduce a value
of type T into a value of type S while an anamorphism will
generate a value of type T from a value of type S.

Our Approach. To avoid the computational redun-
dancy of eval and to find a way around the problem of find-
ing a right inverse for eval, we return to the initial problem
of expressing g7 as eval o f o h?. In particular, the crucial
property of h? with type Value — Term is that it satisfies
eval o h? = Az.z. In addition, this should happen with no
computational overhead. One way to accomplish this is to
take h? to be a value constructor and to add the defining
equation eval (h? x) = x for eval. That is, we can change
the domain, Term, of eval to accommodate a new construc-
tor and then add an extra clause to the definition of eval.

With these ideas in mind, we modify the datatype def-
inition of Term by adding a value constructor Place that
implements h?:

datatype Term = Const of int | Succ | Appl of Term x Term
| Abs of Term — Term | Place of Value

The evaluator is also extended accordingly:

fun eval(Const n) = Numn

| eval(Succ) = Fun(fn Num n = Num(n+1))

| eval(Appl(f.e)) = (case eval(f) of Fun(g) = g(eval(e)))
| eval(Abs f) = Fun(eval o f o Place)

| eval(Place x) =x

Under this definition of eval, the previous example evaluates
as follows:

eval(Appl(Abs(fn x = Appl(Succ,x)),Const 1))

= case eval(Abs(fn x = Appl(Succ,x))) of
Fun(g) = g(eval(Const 1))

= case Fun(fn x = eval(Appl(Succ,Place x))) of
Fun(g) = g(eval(Const 1))

= eval(Appl(Succ,Place(Num 1)))

= case Fun(fn Num n = Num(n+1)) of
Fun(g) = g(eval(Place(Num 1)))

= (fn Num n = Num(n+1)) (Num 1)

= Num 2

Notice that Const 1 is evaluated only once into Num 1 and
it remains in that form protected by the Place constructor
until it is used (this justifies the name Place, which acts
as a placeholder). In a way, Place partially satisfies the
requirements needed from reify. We will see that this partial
satisfaction is “good enough” in many cases and its lack can
be statically detected.

The technique of using a value constructor to approxi-
mate the right inverse of a function can be applied to compu-
tations over Term other than eval. To be completely general,
it is necessary to generalize the type definition of Term by
abstracting over the domain of Place with a new type vari-
able «; after all, not all computations over Terms return
Values:

datatype a Term = Const of int | Succ
| Appl of @ Term x a Term
| Abs of o Term — & Term
| Place of o

This allows any a object to be a subtype of Term, and Place
plays the role of an injection function.

One appropriate generalization of eval is the catamor-
phism. The catamorphism operator for Term replaces each
value constructor (Const, Succ, Appl, and Abs) in an instance
of Term with a corresponding function (fc, fs, fp, and fa):

fun cataT(fc,fs,fp,fa) (Constn) = fcn
| cataT(fc,fs,fp,fa) Succ = fs
| cataT(fc,fs,fp,fa) (Appl(a,b)) = fp(cataT(fc,fs,fp,fa) a,
cataT (fc,fs,fp,fa) b)
| cataT(fc,fs,fp,fa) (Abs f) = fa(cataT(fc,fs,fp,fa) o f o Place)
| cataT(fc,fs,fp,fa) (Place x) = x

Operator cataT has the following signature:
(int—sa)xax(axa—a)x((a—a)=a)—aTerm—a

That is, the abstracted type variable a (the domain of Place)
is bound to the type of the result of cataT.

We may express the evaluator eval as a catamorphism as
follows:

cataT(Num, Fun(fn Num n = Num(n+1)),
fn (Fun(f),e) = fe, Fun)

A printer for a term is:

cataT(makestring, "succ”,
fn (ab) ==at” " 1b,
fn f = let val n = newname()
in"(fn”"ftnt” =" 1(fn)1")" end)

where newname returns a string that represents a new vari-
able name and 1 is string concatenation.

As another example of using a catamorphism over Term,
we present a type inference algorithm. Types can be defined
as follows:

datatype Type = Int | Arrow of Type — Type

A type inference algorithm for terms is a mapping from Term
to Type:

cataT(fn _ = Int,
Arrow(fn Int = Int | _ = type_error()),
fn (Arrow(f),t) = f(t) | - = type_error(),
Arrow)

Type errors are reported when the inferred type is printed
(since most calls to type_error are suspended in closures).
In light of code reuse issues, it is generally not advis-
able to extend type definitions by adding new constructors.
Such extensions can cause non-exhaustive case analyses in
pre-existing code. In our example, the existence of the Place
constructor is problematic for additional reasons. If the user
constructs a Term with Place, then the type of the term will
not be fully parametric. That is, the type variable a will be
bound to some type, ¢, and the given term would no longer
be acceptable as an input to a catamorphism that produces
a value of some type other than ¢. In addition, since Place
plays the crucial role as the approximate right inverse of the
catamorphism, it is not at all clear what consequences the

user-constructed Terms using Place will have for the seman-
tics of cataT.

The solution to this problem is to hide the Place con-
structor from the programmer. If Place does not appear in
the input of cataT, then it will not appear in the output of
cataT either. To see why, consider the case of cataT over
Abs(f). This is the only situation in which Place is intro-
duced by cataT, and it produces the term:

fa(fn x = cataT(fc fs fp fa) (f (Place x)))

If f ignores its argument, then Place will disappear; otherwise
cataT will eventually reduce all occurrences of Place in the
input that have type Term — including occurrences in terms
like (Place z), which will reduce to z. Therefore, Place will
not appear in the output.

The above observation suggests that if the catamorphism
operator were a primitive in the programming language,
then just one Place constructor would be needed. This spe-
cial constructor, Place, could then be used by every cata-
morphism, regardless of which type it traverses. The imple-
mentation of catamorphisms as primitives would guarantee
that Place is the right inverse of each catamorphism. The
Place constructor is completely hidden from programmers
in the same way that programmers cannot access closures;
it is strictly an internal implementation detail.

The Restriction on Place. The primitive place
constructor, Place, is only an approximation to the right in-
verse of cataT. Where does this approximation break down?
To answer this question, consider applying eval to the term

Abs(fn x = case x of Const n = Const n | z = Const 0)
This yields

Fun(fny = eval(case (Place y) of Const n = Const n
| z = Const 0))

Not every instance of a Term can be traversed by eval (ex-
pressed as a catamorphism), because the function f embed-
ded in Abs(f) does not know how to handle the Place con-
structor, as the example above shows. If f merely “pushes
its argument around”. things will be ok, but if f attempts to
analyze its argument with a case expression to “look inside”,
as the example above does, things can go wrong.

Our proposed solution to this problem is to statically
detect when it occurs and to report a compile-time error.
We need to statically detect when a function embedded in
a value construction performs a case analysis over its argu-
ment. This is not always problematic; it only becomes a
difficulty if there exists a catamorphism over this particular
construction. Our strategy is to extend the type system to
detect such cases. We investigate such a type system fur-
ther in Section 3. The type-checking algorithm is simple and
can be implemented efficiently. It reports an error only for
invalid terms.

This restriction is not substantial in our encoding of
terms, since any term construction using regular term en-
coding (i.e., by representing lambda variables explicitly) can
be mapped directly into our term representation without the
above mentioned problem. The problem appears when we
go beyond the typical encoding of terms.

2.1.2 The Parametricity Theorem

As another example of representing terms by structures with
embedded functions, we construct the parametricity theo-
rem for a polymorphic function. To understand this section,
the reader must be familiar with Wadler’s theorems-for-free
paper [15].

Any function f of type 7 satisfies a parametricity the-
orem, which is derived directly from the type 7. For first-
order functions, this theorem states that any strict polymor-
phic function is a natural transformation.

Theorem 1 (Parametricity Theorem) Any strict func-
tion f : 7 satisfies [T](f. f), where:

[basic](r. s) — r=s

[e](r,s)
[Va.r](r.s)

r = al(s)
Va : [r](r,s)

[n](mi(r), w1(s)) A [r2](m2(r), m2(s))
Vo,y: [nl(z.y) = [=](r(z). s(y))
[T(D)](r.s) = Vfz:[r](f(z).2) = r =map’(f)s

%
%
[x =](r.s) —
%

[r1—=7](r, s)

That is, for each type variable ., we associate a function «
(of type a1 — a2, where a; and a» are instances of a). To
avoid the name capture problem, we need to pass an envi-
ronment through [7](r,s) that maps type variable names to
function names. This environment is not necessary if we use
structures with embedded functions.

To illustrate Theorem 1, we derive the parametricity the-
orem for the list catamorphism, fold : Ya.V3. (a—=3—3)—
B — list(a) — B (The construction is accomplished in four
simple steps):

[Vé.Ve. § —€](r, s)
= Vo xy: [8](x.y) = [el(r(x). s(y))
— :?e,.x,y :5x_= o(y) = r(z) =e(s(y))

[Vé.VeVn. 6 = e—n](r. s)
— Venzy: [0](z.y) = [e=nl(r(z). s(y)
— Véenzy:z=46y) = r(r)oe=nos(y)
or Ve ny.z:r(dy)(ez)=n(syz)

[Va.list (a)](r. s)
- Va,f.z: f(CL‘)ZOl(-T) = T:maplist(f)s
or Va:r=map"™ (@) s

[Va.V8. (a =B —B)—B—list(a) = B](r. s) ‘
= [a—=B-8](@. &) = [B-list(a) > 8](re, se)
5 (an) e (By) =Blzy) |

=>r g (Bx) (maplm(oz) y)=p(s & zy)

That is, fold satisfies the following theorem:

(az)@ (By)=Bzey)
= fold(€) (B«) (map"™ (a)y) = B(fold(&) x y)

As was pointed out to the authors by Ross Paterson, the
parametricity theorem can be easily extended to parametrize
over type constructors by associating to each free type con-
structor T : * —* a function T of type (a1 —az)—=T1(a1)—
T2(a2), where T1 and T> are instances of 7. This extension

is useful when we want to express laws about operations

fun parametricity tp =
s) = Eq(rs),

All(fn fnc = cataT(fn (r
fn (a,b) = fn (r;s) = And(a(Apl(Pil,r),Apl(Pil,s)), b(Apl(Pi2r),Apl(Pi2,s))),
fn (a,b) = fn (rs) = All(fnx = All(fny = Impl(a(x,y),b(Apl(r.x),Apl(s.¥))))).
fn f = fn (rs) = All(fnx = f(fn (r,s) = Eq(r.Apl(x,s)))(r.s)),
(]fn (fn,a))) = fn (rs) = All(fnf = All(fn x = Impl(a(Apl(f x) x), Eq(r,Apl(Map(nf).s))))))
tp (fnc,fnc

Figure 1: Generation of the Parametricity Law

parametrized by type constructors. For example, the oper-
ation cata of type VIVa : (T a —a)— pT — a satisfies the
property ¢o(T a) = aotp = (catag)o(Y T) = ao(catay),
where the functions cata here may be parameterized over
different type constructors.

The construction of the predicate of Theorem 1 requires
some variable plumbing when we introduce universal quan-
tification (to avoid name capture, etc.). In addition, a func-
tion is associated to each type variable and this binding
should be carried through the whole construction. We can
avoid the variable binding problems by using structures with
embedded functions to capture universal quantification. Our
algorithm takes a type construction of type T and returns a
predicate of type E:

datatype T = Basic |Prodof T x T |Arrow of T x T
| Univ of T— T | Def of string x T
datatype E = Pil |Pi2 |Aplof E X E |[Eqof E x E
|And of E x E |Impl of E x E
| All of E—E | Map of string x E

Following the same routine as before, (i.e., by adding the
new constructor Place to type T, etc.), we arrive at the fol-
lowing catamorphism over types:

b

p(cataT(b,p,a,u,d) x,
cataT(b,p,a,u,d) y)

a(cataT(b,p,a,u,d) x,

cataT(b,p,a,u,d) y)

(

(

Basic
Prod(x,y))

fun cataT(b,p,a,u,d
| cataT(b,p,a,u,d

Arrow(x,y))

| cataT(b,p,a,u,d) (Univ f)
| cataT(b,p,a,u,d) (Def(n,x))
| cataT(b,p,a,u,d) (Place x)

cataT(b,p,a,u,d) o f o Place)

)
)
| cataT(b,p,a,u,d)
)
) n, cataT(b,p,a,u,d) x)

(
((
((
((
((
(

u
d
X

The algorithm that generates the predicate of the para-
metricity theorem for a function fnc of type tp is the higher-
order catamorphism presented in Figure 1. When this func-
tion operates over Univ(g), it lifts g:-T — T into

f: (ExE—E)—(E x ESE)

The input to f should be fn (r;s) = Eq(r,Apl(x,s)). that is,
it should be the rule for handling the type variable x (the
second rule in Theorem 1). Notice that there is no need to
use a gensym function to generate new variable names since
the variable scoping is handled implicitly by the execution
engine of SML in which this function is expressed. The
Paterson-Meijer-Hutton approach would have failed to cap-
ture this function, since there is no obvious function E— T
that is a right inverse of the parametricity function (described
in Figure 1).

2.2 Circular Structures

In this section we present two more example of datatypes
with embedded functions. We are interested in expressing
computations over infinite structures that always terminate.
Catamorphisms over finite structures have this property. We
would like to extend this property to graph-like data struc-
tures. To do this, we need to represent such structures by
finite algebraic datatypes. One way to do this is to use em-
bedded functions.

2.2.1 Circular Lists

Lazy functional languages support circular data structures.
For example, the following Haskell definition

circ = 0:1:circ

constructs the infinite list 0: 1:0:1: .. by using a cycle.
One way to construct infinite lists in SML is to use lazy lists
(also known as streams), which use an explicit “thunk” for
the tail of a list to obtain tail laziness [11]:

datatype a Clist = Nil | Cons of @ x (unit— «a Clist)
For example, the list circ=0:1:circ is expressed as follows:
let fun circ() = Cons(0,fn () = Cons(1,circ)) in circ() end

Even though many circular structures can be defined this
way, many operations over them need to explicitly carry a
list of visited nodes in order to avoid falling into an infinite
loop. Identifying which nodes have been visited is, however,
also problematic, since there is no pointer equality in the
pure functional subset of SML. Furthermore, the construc-
tion of these circular structures requires the use of recursive
function definitions (such as the circ above), which we want
to avoid when we define catamorphisms (after all, a cata-
morphism is supposed to be an alternative to recursion).

A better definition for circular lists is obtained by recon-
sidering the previous Haskell definition, which is equivalent
to Y(fn x = 0:1:x), where Y is the fixpoint operator of type
(@ = a) = a satisfying Y f = f(Y f). This expression too
does not terminate in strict languages such as SML. One
solution is to suspend the application of Y and unroll the
fixpoint explicitly during an operation only when this is un-
avoidable, as is done implicitly in lazy languages.

We can accomplish a similar effect in strict languages by
encapsulating the recursion inside a value constructor, Rec,
with a type similar to the type (a list = a list) = a list of the
Y combinator. This leads to the following type definition for
circular lists:

datatype o Clist =
Nil
| Consof a x a Clist
| Rec of a Clist— a Clist

We can now express thelist 0:1:0:1: --- as
Rec(fn x = Cons(0,Cons(1,x)))

Functions that manipulate such structures will need to un-
roll the implicit fixpoint in Rec explicitly. The following are
two such functions:

fun head(Cons(a,r))
| head(Rec f)

fun nth(Cons(a,r),0)
| nth(Cons(a,r),n)
| nth(Rec f,n)

;ead(f(Rec f))
?lth(r,n—l)
nth(f(Rec f),n)

For example, if circ = Rec(fn x = Cons(0,Cons(1,x))), then
nth(circ,100) = 0 and nth(circ,101) = 1.

To express catamorphisms cataC(b,f,g) over Clist, we add
an extra type variable 8 and a constructor Place to Clist:

datatype (o,3) Clist =
Nil
| Cons of a x (a,8) Clist
| Rec of (a,8) Clist— (a,3) Clist
| Place of 3

Then cataC(b,f,g) is:

fun cataC(b,f,g) Nil

(b
| cataCEb,f,g) (Cons(a,r))
(

f(a, cataC(b,f,g) r)
g(cataC(b,f,g) o h o Place)
X

| cataC(b,f,g) (Rec h)
| cataC(b,f,g) (Place x)

Notice that cataC does not unroll the fixpoint in Rec h. It
does not need to. Instead, it lifts h into a function of type
B — 3 and it is up to g to decide what to do with it. To
illustrate this, consider the map mapC(h) over circular lists:

fun mapC(h) = cataC(Nil, fn (a,r) = Cons(h(a),r), Rec)

In this case, g = Rec, and g will tie a new “knot” from
the lifted function h, which results in a new circular list.
Working through the example,

mapC(fn x = x+1) (Rec(fn x = Cons(0,Cons(1 x))))
will compute a circular list equivalent to
Rec(fn x = Cons(1,Cons(2,x)))

The Haskell definition x = 1:(map(1+4) x) that computes
the infinite list 1:2:3:4 : ... is represented by the circular
list Rec(fn x = Cons(1,mapC(fny = y+1) x)). For exam-
ple,

nth(Rec(fn x = Cons(1,mapC(fny = y+1) x)), 100)
= 101

But consider the following evaluation:

mapC(fn z = 2xz)(Rec(fn x = Cons(1,mapC(fny = y+1) x)))
= Rec(fn x = mapC(fn z = 2xz)
(Cons(1,mapC(fny = y+1)(Place x))))
Rec(fn x = Cons(2,mapC(fn z = 2xz)
(mapC(fn y = y+1)(Place x))))
= Rec(fn x = Cons(2,mapC(fn z = 2xz) x))

which represents the infinite list 2 : 4 : 8 : 16 : --.. This
result is incorrect. We should have computed:

Rec(fn x = Cons(2,mapC(fn z = z+2) x))

which represents the infinite list 2 : 4 : 6 : 8 : 10 : ---.
But why did we get this error? The problem is that the
Place constructor in this example was intended to be used
for the outer occurrence of mapC, not the inner. Instead it
cancelled the inner occurrence of mapC. If we had followed
the Paterson-Meijer-Hutton approach, we would have used
mapC(fn z = z/2), the right inverse of mapC(fn z = 2xz),
instead of Place. In that case, we would have derived the
correct result. In a situation like this, where a function
is invertible, the Paterson-Meijer-Hutton approach clearly
wins over ours, since it is more expressive. Even though
nth works fine over the above construction, the problem is
that this construction cannot be traversed by another cataC
in our model because of the case analysis implied by the
application of mapC to the argument x. Fortunately, cases
like this are automatically discovered by the type inference
system to be discussed in Section 3.

This restriction is not as severe as it might first appear.
For example, all planar graphs defined in the next section
can be encoded into our representation without any prob-
lem. This is because graph cycles are captured by a con-
struction of the form Rec(fn x = f(x)). If we want to con-
struct a backward edge from a graph node inside the graph
construction f(x) to the beginning of f(x), we simply refer-
ence x. That is, this construction does not need to analyze
or traverse x in f(x) any time. Problems may occur when we
want to capture structures whose patterns of recursion are
not constant (such as the list of natural numbers).

2.2.2 Graphs

Graphs can be represented in a manner similar to the way
in which circular lists are represented. Such a representa-
tion allows terminating computations over graphs — such
as the computation of the spanning tree of a graph — to
be expressed as catamorphisms. The most common way to
represent graphs in a functional language is to use a vector
of adjacency lists. But, this approach is not really different
from using pointers in a procedural language, since permits
ad-hoc constructions and manipulations of graphs. In [13] a
graph type is defined as:

datatype o graph = Graph of a — a list

Here a graph consists of a function that computes the suc-
cessors of each node. This definition requires special care
while programming to guarantee program termination.
Our graph representation is based on the idea of using
embedded functions in a manner similar to the way we did
it for circular lists. We start with a datatype that can repre-
sent trees, which have nodes supporting arbitrary branching
levels. We call such a tree a rose_tree and define it by

datatype o rose_tree = Node of @ x « rose_tree list

Now, we think of a graph as a generalization of rose trees
with cycles and sharing:

datatype o graph =
Node of a X o graph list
| Rec of a graph — a graph
| Share of (a graph — a graph) X a graph

Here. Rec plays the role of the Y combinator in expressing
cycles, while Share plays the role of a function application.

y

Figure 2: Graph with three nodes 0, 1,2 and five edges

That is, Share(f,e) is unrolled as f e. All free occurrences of
x in u in the term Share(fn x = u, €) are bound to e, i.e.,
all x in u share the same subgraph e.

The function

Rec(fn x = Share(fn z = Node(0,[z,Rec(fn y = Node(1,[y,z]))]).
Node(2,[x])))

for example, describes the graph in Figure 2. By following
the same routine as for circular lists, i.e., by adding the
new constructor Place, etc., the graph catamorphism cataG
becomes:

fun cataG(f,g,k) (Node(a,r)) = f(a, map(cataG(f,g,k)) r)
)) = g(cataG(f,g,k) o h o Place)
| cataG(f,g,k) (Share(h,n)) = k(cataG(f,g,k) o h o Place,

cataG(f,g,k) n)
X

(f.g.k) (

| cataG(f,g k) (Rec(h
(f.gk) (
(f.gk) (

| cataG(f,g,k) (Place x)

The following are examples of graph manipulations that use
cataG:

val listify = cataG(fn (a,r) = a:(flattenr), fn f = f[],

fr) =fr)

r) = cata(op +)ra, fnf = f0,
fo (fr) =fr)

fun mapG(g) = cataG(fn (a,r) = Node(g a,r), Rec, Share)

listify flattens a graph into a list, sum computes the sum of
all node values, and mapG is the map over a graph.

The following is another datatype for graphs. Here we
have merged the roles of the Share and the Rec constructors
by using a list in the domain of Rec:

datatype o graph =
Node of & X o graph list
| Rec of int x (a graph list — o graph list)

Under such a graph representation, the graph in Figure 2 is
constructed by

Rec(3, f|'n [x.y.z] :>)[Node(0,[y,z]),Node(l,[y,z]),Node(Z,[x])]
X = error

In general, any set of n mutually recursive Haskell defini-
tions of the form z; = fi(z1.....2,), 1 < 1 < n, can be
represented by

Rec(n, fn [z1,...,2] = [fi(z1.....20). ..o, fo(Z1. ... 20)]

| x = error)

The interpretation of Rec(n,f) is hd(Y f). For practical rea-
sons, both the input and the output list of f must have the
same size, n, in order for the closure Y f to execute with
no run-time error. By following the same routine as before,
i.e., by adding the new constructor Place, etc., the graph
catamorphism becomes:

fun cataG(fn,fr) (Node(a,r)) = fn(a, map(cataG(fn,fr)) r)
| cataG(fn,fr) (Rec(m,f))

= fr(m, map(cataG(fn,fr)) o f o (map Place))
| cataG(fn,fr) (Place x) = x

For example, the following computes the adjacency list of a
graph:

cataG(fn (ar) = [(a,map(#1) (flatten r))],
fn (n,f) = flatten(f(f(ncopies n []))))

where ncopies n a creates a list of n copies of a. If we had
flatten(f(ncopies n [])) in the second parameter of cataG, we
would have obtained an empty adjacency list for each node.

In each of the examples above, it was necessary to use the
trick of extending the datatype definition with an additional
constructor Place, adding to the datatype a type variable to
hold the type of the result of a catamorphism, and writing
the catamorphism function by hand. Unfortunately, in none
of these cases is there a guarantee that the programs written
obeyed the restriction described in Section 2.1.1.

In the next section we define a language in which our
trick is implemented implicitly. That is, the Place construc-
tor and the catamorphism function become primitives of the
language, but because Place is hidden, it is impossible for
the user to construct programs that use Place. The result-
ing language also supports a type system that enforces the
above mentioned restriction. Type inference rules for this
type system are also presented.

3 The Formal Framework

In this section we define a language that allows the def-
inition of new datatypes and implicitly supplies the trick
we have used in the examples of Section 2. The expres-
sion sub-language includes the catamorphism operator for
any datatype as a primitive. Syntactically, the user writes
cata T, where T is the name of a user-defined datatype.
The semantics of the catamorphism primitive is given as
an implicit case analysis over the datatype traversed by the
catamorphism and need not be supplied by the user. This
semantics accommodates the Place constructor only as an
internal implementation detail.

In the interest of simplicity, the language does not use
explicit value constructors, as do most functional languages.
Instead, it uses binary sum and product types. The resulting
notation renders the underlying theory easier to explain be-
cause fewer rules are needed to express our algorithms, but,
unfortunately, also makes programs hard to understand. For
clarity, we will explicitly describe the correspondence be-
tween functional languages and our language as we proceed
through this section.

3.1 Terms

Terms € in the language are generated by the following gram-
mar:

(term) e == x| ()| ee|Az.e|(c,¢)|inT e |inL|inR
| cata” e | Min z.e | Mz, 2). ¢

| MinLz.e[[inRz. €

where z denotes a variable. The term in” is the value con-
structor for the recursive type associated with the type def-
inition T (to be explained in detail later). The constructors
inL and inR are the left and right injectors of the sum type.

The function cata? is the catamorphism operator for 7. The
in-abstraction Min” z.¢ is defined by (Mn” z.¢) (inu)
(Az.€) u, and the pair-abstraction A(z, y). € is defined by:

()‘(1" y)f(l'y))(ﬁl 62) = f(61762:)

The sum-abstraction AinLz1.€; [inRz2. €2, when applied
to inLu, computes (Az1.€1)u and, when applied to inR u,
computes (Azz.e2)u.

As explained above, our language does not contain value
constructors. The value constructors of a type can be de-
fined in terms of other operators and these definitions can be
generated automatically. For example, for SML lists defined
as:

datatype o list = Nil | Cons of @ X a list
the value constructors Nil and Cons could be defined as:
in"St(inR(a, r))

Nil = inbSt(inL()) Cons(a,r) =

Traditional languages use case statements to decompose val-
ues. Our term language can capture any case analysis over
a value construction by using sum- and in-abstractions. For
example,

case ¢ of Nil = ¢; | Cons(a,r) = e
can be expressed by the following composition of operators:

()\inl‘ist z.(AinLy.e; [inRy. (A(a.r).e2)y)z)e

3.2 Types

Our types are generated by the following grammar:

(type-definition) T == A(z,z).T |7

(type) Tu=g|()|rx7r|r+7|T>7|E
(type use) E = py*T|E(7,7)

(tag w = x| cased | folded

A type definition consists of a number of type abstractions
followed by a type. Each type abstraction A(z,y). 7 intro-
duces two type variables: a positive (4) # and a negative
(=) y. A positive (resp., negative) variable should only
appear in a positive (resp., negative) position in a type.
This condition is implicitly checked by the rules guarantee-
ing well-formedness of types, given in Figure 3. Under this
condition, a and ¢ appear in a positive position in the type
(e —B)—~—4, while B and v in a negative.

The rules in Figure 3 check the well-formedness of types
using the following definitions:

(kmd) k = x| + |_
(kind-assignment) p == {} | p{z: k}

A type T = A(zo,3(). ... A(zn, xy,).7 must satisly p{zo :
4,26t =T+, xn:—}l—T::—l—. A type definition T
must have at least one type abstraction A(zo, z{), which is
used when constructing the fixpoint p“ 7T of T. The w tag
in ¢“ is used during type-checking and is hidden from pro-
grammers. The fixpoint type constructor p“ is a primitive
and satisfies the equation

Tl T(Tl,T{).' (T Ty)
= T((u* T (r.m1) (™

(r1.71) - (Tn. 77)

) (e T ()

(T2: ™))

That is, p“T is the fixpoint of T, where both the argu-
ments of the first abstraction of T are fixed to u“7T. We
will see later that any type definition T that meets the well-
formedness criteria of Figure 3 is a functor that is covariant
in its positive arguments and contravariant in its negative
arguments, that is,

= T(fl Ogl',gi Ofll)"'(fnogrug;z Ofrlz)

The following are examples of type definitions:

Bool = A(my)0+0

Nat = Alz,y).()+z

List = Alz.y). Mo, o).)+axz
(

Rose_tree = A x,y)./\(oz,oz')./\(ﬁ,ﬁ').

() + (a+ B x (u“List (z,y)))
Az, y). AMa,a’).)+ (a x z + (y—5))
Alz.y). AMa.a’). (¢’ =a) + (y—)

Clist =
Ctype =

The inductive list type definition
datatype list(a) = Nil | Cons of axlist(a),

for instance, is derived by applying the fixpoint operator to
List to obtain

list(a) = p“ List (o,)

Note that types that do not include embedded functions —
such as the familiar List, Nat and Bool — make no mention
of their negative type variables.

3.3 The Semantics of Catamorphism

The semantics of the catamorphism cata® over a type defi-
nition 7 can be given as an implicit case analysis over 7. A
type definition T = A(zo,%) ... A(zn, zy,). T is associated
with a combinator, which we will prove is a functor. The
type mapping part of the functor is the polymorphic type
T itself. The function mapping part of the functor is de-
fined by T (fo £o) -+ (fa, fr) = M[7], where each function
f. (resp., f!) is associated with the type variable z; (resp.,
z;). The term M][r] is derived by a case analysis over the

type T:

M[[$1]] = ft
M[0] = Ar.x
M[n x] = Az, y). M[n]z. M[r]y)

M[rn+] = AinLz.inL(M[n]z)
linRy.inR(M[r] y)

M[ri=n] = Iz M[n](R(M[n](2)))
Mp“ S (11.71) (Tm, 7)1

= map” (M[ni]. M[r{]) - - (M[7m]. M[7])

where for the combinator S = A(z0,%4) ... A(Zm, T1,). T We
have

(maps(flfll) (fm fm))oln

= ino (S (map® (fi. 1) (fm:).
map® (1. f1) - (fin. fm)
o 1) (s f1n)

pbEm ok, pbkmuk

pbTm ik, pbEmik

pbm -k, pbmk

pbT X1k

pbTick, pkTl
oo +, 5

pbET+m ik

=k, T = A=zo0,24)....AMZn, z3,).T,
— e B T T+

pET—om ok

pr T (m, 1) (Tn,h) i k

Figure 3: Well-formedness of Types (Definition: —(+4) = — and =(—) = +)

Theorem 2 For T = A(zo,zg) ... AM@n,x},).7, the combi-
nator T (fo, f3) -+ (fn, fn) = M[7] is a functor, i.c., it sat-
i1sfies

T (Ar.z, Az.z) - (Az.z, dz.z) = Az.x

= T(foogo.g50 fo) - (frnogn.gno fr)

This theorem can be proved by induction over the structure
of 7 in M[7. Let Mi[r]=T (fo. f3) - (fu: f2). Malr] =
T(g0.96) - (gn:gn): and Ms[7] =T (foogo.goofs) - -+ (fno
Gn:gn o fr). Tt suffices to prove that, for any type 7, if
{} b 7+, then M3[r] = M;[r] o M2[r]. and otherwise
Ms[[r] = Mo[r] o Mi[7]. For illustration purposes, we
present only one case of this proof where 7 =71 — 7 and 7
is positive; the proofs in the remaining cases are similar.

Mi[[r] o M2[7]

= (A 2z My[r](h(Mi[n](2)))

o(Ah. Az Ma[n](R(M:]n](=)))
A Az (M [n](Ma[r](R(Me[n](Mi[n](2))))))
M Az (Ma[n](h(Ms[i](2))))

Ma[7] .

The catamorphism over any datatype T is defined in
terms of the combinator £7, which is equal to the functor
T with all but its first two arguments fixed at the identity:

ET () = TUT) Owa, Az.z) - - - (A, Az.x)
According to Theorem 2, £7 satisfies the law
EN(fr o (gt gT) =€ (frogt.gm o f7)

According to our previous discussion, to define the cata-
morphism over T, we need to extend T with a new value
constructor Place and a new type variable 3. We get

T'B(a0,ab) - (anap) = (T (a0, ap) - (an.al)) + B

Here Place is equal to in” oinR. The resulting catamor-

phism over T is

(cata” ¢) o in? = AinLu. H(ET (cata” &, in” o inR) z)
linRy.y

But here the Place constructor is transparent to program-
mers. To hide it, we need to introduce the special term
Place.

Definition 1 (Catamorphism) The catamorphism for a
type T is cata” : (T(a,a) = a) = p“T = a, defined as

follows:

cata’ ¢ (in”x) = $(E7 (cata” ¢, Place) x)
cata’ ¢ (Place «)

r

According to this definition, the catamorphism for circular
lists is cata®st ¢, given by

Cataclist ¢(inclist 1’}) —
¢((AinLy.inLy
JinRy. inR((AMnLz.inL((\(a, r). (a, cata®" ¢ 1)) 2)

[inRA. inR(Aw. cata*! ¢ (h(Place w)))

-)y)) x)
cata®™*' ¢ (Place z) = =
If we had expressed the first case of this definition in a func-

tional language with value constructors and pattern match-
ing, we would have

CataClist ¢(inclist (I))
= ¢(case z of
Nil' = Nil’
| Cons’(a,r) = Cons'(a, cata®!*t ¢ r)
| Rec’(f) = Rec'((cata“™' ¢) o f o Place))

where Nil' = inL(), Cons’(a,r) = inL(inR(a,r)), and

Rec'(f) = inR(inR(f)). For example, the following pro-

gram computes mapC(g). the map over Clist:

Clist (AinLy.inLy

linRy.inR((AinLz.inL((A(a.r).(ga. 1)) z)
linR Ah.inR(hR)) y))

cata

Meijer and Hutton [8] define a catamorphism cata” in

conjunction with its dual, the anamorphism anal, as fol-
lows:
cata’ ¢ (inTz) = (7 (cata” ¢+, ana” ¢ ¢) &)

anal ¢z inT(£7 (ana” ¢ 4, cata” ¢) (¢ z))
That is, both cata’ and ana? should take two functions, ¢
and . The first, ¢, is used in the catamorphism and the
other, 1, is be used in the anamorphism. This dual pair of
cata-ana should satisfy the law (cata’ ¢ +)o(ana’ ¢p4) =id
in order to be useful. This implies that ¢ o ¢ =id.

To complete the explication of the relationship between
our work and that of Meijer and Hutton’s, we show that the
notion of anamorphism is dual of that of catamorphism.

Definition 2 (Anamorphism) The anamorphism for a type

T

T isana” : (a—=T(a,a))=a—pu“T, defined as follows:

ana’l Yr = inT(é'T (anaT . Place) (¢z))

One of the advantages of using catamorphisms instead
of general recursion is that they satisfy nice properties. In
particular, they satisfy an important property known as the
fusion law, which can be used for fusing any strict function
with a catamorphism to yield another catamorphism. The
fusion law for a catamorphism of type T is given by the
following theorem.

Theorem 3 (Fusion Law) For any strict function g:

gog = tof¥(g,id)

gocataT ¢ =

cata’ ¥

Proof: Since Place is internal to each cata’, we will consider
only the case where the input is in” (external uses of Place
are detected and ruled out by our type system). We have

gocatal poinT = gogo&T (cata’ ¢, Place)

Yo &L (g,id) o £T (cata® ¢, Place)
Yo &7 (gocata” ¢, Placeoid)

Yo T (cata” ¢, Place)

= cata’ ¥ oin? a

I

I

3.4 Type-checking

The grammar for the term language gives syntactic rules
for valid term constructions, but not all such terms have
meaning. Traditionally, a type system is used to discover
invalid terms by attempting to assign types to terms. Here
we will use the type system to distinguish both the ill-typed
terms and terms with illegal uses of catamorphisms. Since
our language support polymorphic data types, we will need
a Hindley-Milner style type-inference algorithm. Here we
will only give the typing rules for the type-inference system.

Figure 4 presents the typing rules for our A-calculus. We
add to the usual rules the rules (CATA), (IN), and (OUT).
To simplify these rules, we assume that a type definition T
has only one type abstraction, i.e., we assume that T con-
tains one positive and one negative variable. If we ignore
the w’s in the Rule (IN), then the type of in” ¢ is the fix-
point of the functor T and the type of € is T with both its
positive and negative arguments fixed to the fixpoint of 7.
In addition, Rule (IN) propagates the w flag only to the neg-
ative part of 7. Rule (OUT) is in some sense the opposite
of Rule (IN) since Ain” z.¢ is a function from the fixpoint
of T to the type of e. Rule (OUT) also sets the w flag of the
negative part of T to cased. Rule (CATA) sets the w tag of
p” to folded. 1f a term of type u“ T is examined by the term
AMn? z.e, then Rule (OUT) sets the w tag to cased, which
is propagated through the negative part of 7. If the w tag
reaches a catamorphism, then p**¢¢ T and 4?7 will not
unify and the type-checking will fail.

To illustrate how the typing rules in Figure 4 detect er-
rors, consider the term

cata“™"' ¢ (Rec(AMin“"™! . ¢))

where Rec(f) = inChSt‘(inR(inR(f))). This term is not
z.€) is of type p*d Clist — 7,

“list

well-typed, since (Ain

10

the term in®"™" will propagate the type of its negative in-

put, p@dClist, to its output, and finally the resulting
type p**°? Clist will not unify with the type p™'9¢d Clist
in Rule (CATA). On the other hand,

cata®"" ¢ (Cons(a, (AMin“™" £.€)r))

where Cons(a,r) = inChSt(inR(inL(a,r))), is well-typed,
since Rule (OUT) will bind the 1 tag of the negative part of
T to cased. Since the type of the constructor Cons does
not use the negative part of 7T, this binding will not be
propagated.

A type-checking system that is based on the typing rules
in Figure 4 needs a unification algorithm. A slight variation
of the usual unification algorithm can be used. The only
special case it needs to consider is the case of unifying p“* T
with another p“? S, since this is the case where an error
occurs if a program does not satisfy the restrictions. The
type p“* T will unify with 4“2 T (denoted as p“* T = p“2 T)
unless either [lfOIdedT ?_é llcasedT or [lfOIdedT 7_’_'—' [lfOIded T.
We have already presented an example in which the first
case occurs and in which the type checker should therefore
report an error. An example in which the second case occur
was given in Section 2.2.1 by

mapC(Az. 2)(Rec(Az. Cons(1, mapC(Az. z + 1) z)))

The outer mapC is a catamorphism over the infinite list
1:2:3:---. Since the inner mapC is a catamorphism too,
the folded tag will be propagated all the way through the
input of the outer mapC. As we have seen, this program is
invalid and it should be ruled out by the type-checker.

4 Conclusion

We have presented a new method for defining catamorphisms
over datatypes with embedded functions. Our approach can
be useful even when the approach outlined by other recent
proposals fails, since it does not require the existence of
inverse functions. Our method has a more efficient imple-
mentation and is often easier to use and understand since
it does not require programmers to explicitly develop the
inverse functions. We have characterized exactly when we
can trade the restrictive condition about the existence of
an inverse for another, more useful, condition that we can
statically test.

We have demonstrated how to use datatypes with em-
bedded functions in two large and useful domains: meta-
programming and circular structures. We have demonstrated
that structures with embedded functions provide a natural
way to express meta-programming and program manipula-
tion of languages with binding constructs like lambda ab-
straction, because there is no renaming problem or need for
a gensym-like solution. Therefore, our approach is purely
functional and do not require us to resort to the well-known
stateful monad tricks.

The other domain of examples was on structures with
cycles. It is well known that implementations of functional
languages use pointers and cycles, but these are hidden im-
plementation details. They are exactly the mechanisms pro-
grammers would like to use to implement graphs, but can-
not. We have developed a mechanism that allows program-
mers to get a better hold of these implementation details in
a manner which is still safe.

(VAR) ok z:o(r) (UNIT) obF():()
(INL) ocrFinL:m—=7m 4+ 7 (INR) cFinR: =71 +m
‘ ocber:mm—7m., obe:T) olr . nltbte:r
(APPL) — —— (ABS) {r:n) -
okbeler:m ok Ar.e:T1—1
ockber:m., obe:m of{zy 1. 02 :m}Fe:T
(PROD) — = (xABS) (o im. oy :)
ok (e1,€2) 11 X7 ob M1, 32).6: 11 X T2 T
obe:T(r.7)=T o{ri:mtber:7m. o{rs:mltber: T
(CATA) — (f’ld)d (+ABS) {1, i — {ra:m} P oo
’ okcata’ e: T —r ok (AMnLzy.e; [[inRzs.e2) i+ =7
_ obe: T (" T,u?T) ; (T (T p ™ T} ke
(IN) L L d) (oUT) o Tl T T Re iz
obin® e: y“2T ok An® z.e: yu T 51
Figure 4: Typing Rules (where a type-assignment is ¢ = {} | o{z : 7})

5 Acknowledgments

The authors would like to thank Patty Johann, Erik Mei-
jer, Ross Patterson, Doaitse Swierstra, Andrew Tolmach,
and the anonymous referees for extensive comments on ear-
lier drafts of this paper. Leonidas Fegaras is supported
in part by the National Science Foundation under grant
IR1-9509955, and by contract by the Advanced Research
Projects Agency. ARPA order number 18, monitored by the
US Army Research Laboratory under contract DAAB-07-
91-C-Q518. Tim Sheard is supported by the USAF Air Ma-
terial Command under contract # F19628-93-C-0069.

References

[1] R. Bird and O. de Moor. Solving Optimisation Prob-
lems with Catamorphisms. In Mathematics of Program
Construction, pp 45-66. Springer-Verlag, LNCS 669,
June 1992.

A. Church. A Formulation of the Simple Theory of
Types. Journal of Symbolic Logic, 5:56-68, 1940.

L. Fegaras, T. Sheard, and T. Zhou. Improving Pro-
grams which Recurse over Multiple Inductive Struc-
tures. In ACM SIGPLAN Workshop on Partial Fvalu-
ation and Semantics- Based Program Manipulation, Or-
lando, Florida, pp 21-32, June 1994.

J. Launchbury and T. Sheard. Warm Fusion. Seventh
Conference on Functional Programming Languages and
Computer Architecture, La Jolla, California, pp 314-
323, June 1995.

G. Malcolm. Data Structures and Program Transforma-
tion. Science of Computer Programming, 14:255-279,
1990.

G. Malcolm. Homomorphisms and Promotability. In
Mathematics of Program Construction, pp 335-347.
Springer-Verlag, LNCS 375, June 1989.

11

[7] E. Meijer, M. Fokkinga, and R. Paterson. Functional
Programming with Bananas, Lenses, Envelopes and
Barbed Wire. In Proceedings of the 5th ACM Confer-
ence on Functional Programming Languages and Com-
puter Architecture, Cambridge, Massachusetts, pp 124—
144. Springer-Verlag, LNCS 523, August 1991.

E. Meijer and G. Hutton. Bananas in Space: Extending
Fold and Unfold to Exponential Types. Seventh Confer-
ence on Functional Programming Languages and Com-
puter Architecture, La Jolla, California, June 1995.

G. Nadathur and D. Miller. Higher-Order Logic Pro-
gramming. In D. Gabbay, C. Hogger. and A. Robinson,
editors, Handbook of Logic in Artificial Intelligence and
Logic Programming. Oxford University Press, 1995. To
appear.

[10] R. Paterson. Control Structures from Types. Un-
published draft. Available by anonymous ftp from
ftp-ala.doc.ic.ac.uk/pub/papers/R.Paterson/folds.dvi,

1994.

[11] L. Paulson. ML for the working programmer. Cam-

bridge University Press, 1991.

F. Pfenning and C. Elliott. Higher-order Abstract
Syntax. Proceedings of the ACM SIGPLAN °88 Sym-
posium on Language Design and Implementation, Al-
lanta, Georgia, pp 199-208, June 1988.

[12]

[13] C. Reade. Elements of Functional Programming. Ad-

dison Wesley, 1989.
T. Sheard and L. Fegaras. @A Fold for All Sea-

sons. Sixth Conference on Functional Programming
Languages and Computer Architecture, Copenhagen,
Denmark, pp 233-242, June 1993.

P. Wadler. Theorems for Free! Fourth Conference on
Functional Programming Languages and Computer Ar-
chitecture, Imperial College, London, September 1989.

[14]

[15]

