

Source-to-source transformations:		
 unnesting SQL magic sets	(Kim, Ganski, Muralikrishna) (Mumick & Pirahesh)	
Evaluation techniques:		
• query decorrelation	(Seshadri et al)	
• memoization (caching)	(Hellerstein)	
Algebraic approaches:		
• algebraic equalities	(Cluet & Moerkotte)	
 normalization 	(Fegaras, Trinder, Wong, etc)	

Dur Approach is purely algebraic. *Formalism:* **monoid comprehensions** (NF² + aggregation + quantification) It treats nested collections, aggregation, and quantification in the same way. Many forms of query nesting are removed by normalization; the rest are removed by a simple, compositional, algorithm.

- 3 -

<text><text><equation-block><text><equation-block><text><text><text><text><equation-block><text>

Example	
$ \begin{array}{l} \cup \{ \text{ hotel.price} \\ \mid \text{ hotel} \leftarrow \cup \{ \text{ h} \mid \text{ c} \leftarrow \text{Cities}, \\ & \text{ h} \leftarrow \text{ c.hotels}, \\ & \text{ c.name = "Arlington" } \}, \\ \lor \{ \text{ r.bed_num = 3 } r \leftarrow \text{ hotel.rooms } \} \} \end{array} $	
$= \cup \{ \text{ h.price } c \leftarrow \text{Cities}, \\ h \leftarrow \text{c.hotels}, \\ r \leftarrow \text{h.rooms}, \\ \text{c.name = "Arlington"}, \\ \text{r.bed_num = 3} \}$	
Leonidas Fegaras, UTA SIGMOD'98	- 10 -

	Monoid Algebra	
	$= \bigcup \{ r \mid r \leftarrow R, p(r) \}$ = $\bigcup \{ (r,s) \mid r \leftarrow R, s \leftarrow S, p(r,s) \}$ = $\bigcup \{ (r,s) \mid r \leftarrow R, s \leftarrow path(r), p(r,s) \}$	
	$= \bigoplus \{ e(r) \mid r \leftarrow R, p(r) \}$ $= \bigcup \{ (f(r), \bigoplus \{ e(s) \mid s \leftarrow R, f(r)=f(s), p(s) \})$ $\mid r \leftarrow R \}$	
Other operators:		
$R \Longrightarrow_p S$	left outer-join	
$=\mu_p^{\text{path}}(\mathbf{R})$	outer-unnest	
Leonidas Fegaras, UTA SIGMOD'98	- 18 -	

