
http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 1

A Fully Pipelined XQuery Processor

Leonidas Fegaras Ranjan Dash YingHui Wang
University of Texas at Arlington

fegaras@cse.uta.edu
http://lambda.uta.edu/XQPull/

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 2

Data Stream Processing

• What is a data stream?
– continuous, time-varying data arriving at unpredictable rates
– continuous updates, continuous queries
– no stored index is available

• Sought characteristics of stream processing engines
– real-time processing
– high throughput, low latency, fast mean response time, low jitter
– low memory footprint

• Why bother?
– many data are already available in stream form

• sensor networks, network traffic monitoring, stock tickers
• publisher-subscriber systems
• data stream mining for fraud detection

– data may be too volatile to index
• continuous measurements

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 3

XML Stream Processing

• Various sources of XML streams
– tokenized XML documents
– sensor XML data

• Granularity
– XML tokens (events): <tag>, </tag>, “X”, etc
– region-encoded XML elements
– XML fragments (hole-filler model)

• Push-based processing: SAX
– event handlers

• Pull-based processing: XML Pull (http://www.xmlpull.org/)
– iterator model

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 4

Our Assumptions and Goals

• Focused on very large (maybe unbounded) XML data streams
– the nesting depth of elements is assumed to be considerably smaller than

the stream size

• Aimed at casual ad-hoc XQueries that produce output far smaller
than the input stream
– GOAL: in the worst case, non-blocking queries may use memory

proportional to the output size and the nesting depth of the input stream,
but not proportional to the input stream size

• Focused on query processing on schema-less data only
– done after all necessary optimizations have been applied

(type information can help remove many forms of inefficiency)

• Wanted to be able to streamline all essential XQuery features
– FLWOR, predicates, recursive queries, backward axes, function calls

• Striven for an efficient, concise, clean, and extensible design
• Intended to be used by lightweight clients with limited memory

capacity and processing power

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 5

Background: Pipelined Processing

• It's a pull-based stream processing
– popular in database query processing

• A pipeline is a sequence of Iterators
class Iterator {

Iterator input; // the input iterator
void open(); // open the stream iterator
void close(); // close the stream iterator
Event next(); // get the next event

• An iterator reads events from the input stream and delivers events
to the output stream

• Connected through pipelines
– an iterator (the producer) delivers an event to the output only when

requested by the next operator in pipeline (the consumer)
– to deliver one event to the output, the producer becomes a consumer by

requesting from the previous iterator as many events as necessary to
produce a single event

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 6

Background (cont.)

• Simple XPath steps are trivial to implement using iterators
– not that different from transducers

• Example: the Child step (/tag)
– state:

• need a counter nest to keep track of the nesting depth, and

• a flag pass to remember if we are currently passing through or discarding
events

– logic:
• when we see the event <tag> at nest=1, we fall into the pass mode until we

see </tag> at nest=1

• while in pass mode, next() immediately returns the current event

• while not in pass mode or nest=0, next() loops

• Hard to extend these methods to handle general predicates,
recursive queries, backward steps, etc

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 7

General Predicates

• Problem: streamline e1[e2] without using any local cache

e1 pipeline e2 pipeline Predicateclone

A

B

<tag>

</tag>

<tag>

</tag>

false()

false()
true()

true()

false()

false()

false()

stream B stream A
suspend
<tag>

release

</tag>
suspend
<tag>

</tag>
discard

output

output

• Each suspend event has a
matching release/discard
event (like <tag> ...</tag>)

• We emit a release as soon as
the predicate becomes true()
at the top element

• Otherwise, we have to wait
for the end of the top element
to emit a discard

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 8

General Predicates (cont.)

• Simple idea: we postpone the removal of discarded events as
much as possible
– typically, to the end of query evaluation
– ... or before a blocking operation

• Why?
– the hope is that these segments will be reduced later by subsequent

operations, thus reducing the final cache size
– if the predicate becomes true before any output is generated from the

suspended segment, no buffering is necessary

• Problems:
– to remove the discarded events (at the end), we'd need to cache each

suspended element
• O(N) space for a stream of size N

– each pipeline iterator must be able now to handle the new events
– there may be unnecessary computation performed on the suspended data

to be discarded later

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 9

Recursive Steps

• The XPath steps //* and //part over recursive data (ie, parts
containing other parts, etc, at any depth)

• If we are strict about preserving the I/O semantics of each
operator, we'd need O(N) state, for a stream size N

<a>

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>

 <c>
 <d>
 Z
 </d>
 </c>

input state

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>

 <c>
 <d>
 Z
 </d>
 </c>

output

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>

 <c>
 <d>
 Z
 </d>
 </c>

 (cont.)

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>
 <c>
 <d>
 Z
 </d>
 </c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 <d>
 Z
 </d>

state1

state2

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 10

Retarded Streams

• The reason we need a large state for //* is to append the events
of depth k+1 after the events of depth k

• Relaxing the semantics:
– events may appear out-of-order in a stream

• as long as we restore the order later

• Simple idea:
– the stream passed through the pipeline may contain multiple conceptual

streams
– each stream may include multiple levels

• instead of deferring events by caching, we place them into a new level
immediately

• to preserve semantics, eventually, events of level k+1 must be placed after
events of level k

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 11

The //* Step

• Every event of nesting depth d>0 is repeated d-1 times

• The actual physical stream is:
<c><c><d><d><d>XXX</d></d></d> ...

<a>

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>

 <c>
 <d>
 Z
 </d>
 </c>

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>

 <c>
 <d>
 Z
 </d>
 </c>

 <c>
 <d>
 X
 </d>
 <d>
 Y
 </d>
 </c>

 <c>
 <d>
 Z
 </d>
 </c>

 <d>
 X
 </d>
 <d>
 Y
 </d>

 <d>
 Z
 </d>

input level0 level1 level2

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 12

Why Bother?

• Now recursive steps need constant size memory, but ...
• still need to move events to the right place later: O(N) again!
• ... but, hopefully, later is better than now

– by postponing caching, we anticipate a stream reduction by subsequent
operations, thus reducing the final cache size

– works great if the query output is far smaller than the input stream

• Example: //*/A
– the //* iterator doesn't need to know that the next step is /A

– although //* creates many events, each event may be discarded
immediately by /A

• The price of laziness:
– Now each iterator must keep multiple copies of its state

• one copy for each level
• OK, since the maximum number of levels is the document depth

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 13

The Infamous Backward Steps

• Parent step /.. is far more common than ancestor::A or
ancestor::*
– potentially, they may result to the whole stream

• Can we use a trick similar to //*/A to delay caching?

• Method:
– clone the stream source immediately after is generated and propagate it

through the pipeline until is used by the backward step
– the iterator that implements a backward axis is a special join between the

incoming stream and the cloned stream source
• it is a sliding window semi-join that uses event timestamps to synchronize the

two streams

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 14

The ancestor::* Step

• Uses the //* step just before the sliding window semi-join

stream A is the current context; stream B is the doc()//*

 stream B stream A output

<tag>

</tag>

data
source

pipeline //* ancestor::*clone
A

B

suspend
<tag>

resume

</tag>

sliding window

doc()

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 15

Backward Steps (cont.)

• Like //*, no caching is required locally
– but may need O(N) at the end

• Assumes that the distance between identical events from the
streams B and A does not exceed the sliding window size
– true for most operators
– it does not work if there is a blocking operation in the pipeline before the

backward step that rearranges the order of events, such as sorting or
concatenation
(for ... order by ... return ...)/ancestor::*

• The parent axis step (/..) works like the ancestor::* step,
but the synchronization in the sliding window takes into account
the element depth
– only events of depth 1 in B and of depth 0 in A are under consideration

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 16

What About the Rest of XQuery?

• The EndTuple event separates tuples generated by FLWOR blocks
– each inner block is driven by the outer block

• the inner pipeline is simply appended at the end of the outer pipeline
• an EndTuple event from the outer pipeline kicks the inner pipeline

– let- and for-variables are bound to streams
• a reference to a variable clones the bound stream

• A challenging query: 1
– constants and constructions need to be kicked too

• Blocking operations
– concatenation and sorting are straightforward
– haven't done much about joins between documents yet

• Function calls
– fully streamlined

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 17

Conclusion

• Did you get the feeling you've been cheated?
– we stretched, cloned, and sliced the stream into multiple levels
– ... but we didn't cache it!

• But, is it still stream processing?
– yes, based on characteristics: throughput, latency, memory footprint

• Was it worthy to be so obsessed about caching?
– promising preliminary results: up to 15 MBs/sec throughput

• Final words:
– XQPull is still in its very early stage of implementation
– the source code is available at http://lambda.uta.edu/XQPull/
– please come to the demo to see it at work

http://lambda.uta.edu/XQPull/ A Fully Pipelined XQuery Processor 18

To Push or to Pull? (revisited)

• Easier to implement fancy stream processing techniques using
push-based processing
– easier to split a stream: the producer sends each event to both consumers
– our //* multilevel trick can be done by using an iterator wrapper that

dispatches events based on level

• ... but, when joining two data sources, the consumer doesn't have
any control of the rate the events are received from the left & right
producers
– limited choices for push-based: symmetric join
– numerous choices for pull-based (see DBMS query processing)

• Bottom line:
– push, if you have a single data source
– pull, if you need to capture queries over multiple data sources and you

want to use fancy join techniques

